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NOTICES

This report is issued to provide a manual of gravity
correlation methods for the prediction of 1° x 1° mean gravity
ancmaly values for continental areas. It is intended 1or use by
organizations and individuals interested in the geophysical
accountability and prediction of gravity anomalies. Nothing
herein is to be construed as Defense Mapping Agency Doctrine.

This report is a dissertation submitted to the Graduate
Division of the University of Hawaii in partial fulfillment of
the reguirements for the degree of Doctor of Philosophy in
Geology and Geophysics.

This publication does not contain information or material of
a copyrighted nature, nor is a copyright pending on any portion

thereof'. Reprodvction in whole or part is permitted for any

purpose of the United States Government.




-

iv

ACKNOWLEDGEMENTS

The writer is indebted to the following people who provided

material assistance in completing this work:

Dr. Kenneth I. Daugherty, Dr. Simo H. Laurila,
Dr. Fareed W. Nader, Dr. John C. Rose, and Dr. George P. Woollard,
all of whom served on my Dissertation Committee, for their

encouragement, advice, and helpful suggestions;

Mr. Elmer J. hauer and Mr. Thomas O. Seppelin whose
leadership created an ideal working environment while this

study was accomplished;

Mrs. Deborah S. Hogan who worked tirelessly in typing
this report, and Mrs. Mary E. Bove and Miss Elaine LaMay who

ably assisted in the typing duties;

Mr. David A. Eisenberg who did & superb job of turning

rough draewings into finished illustrations;

Mrs. Lois W, Wilcox for her patience, understanding,

and assistance with proofreading the text; and

A1l members of the Gravity Correlstion Branch, past and
present, whose professionalism, skill, and support made possible

many. of the results reported in this work.




iii

PREFACE

The intent of this study is to establish an understanding of
geophysical gravity prediction. The study, however, is oriented
as much to applied as to theoretical aspects of gravity correlations.
The writer has endeavored throughout to provide a simple picture
of the central ideas underlying gravity correlation, prediction,
theory, and practice.

The first three sections provide an introduction and discussion
of some gravity anomaly principles of importance *o geophysical
gravity prediction. In this regard, no attempt is made to discuss
all of the ideas of George P. Woollard whose extensive work in
geophysical gravity analysis forms the backbone of gravity
correlations. Rather, a complete bibliography of previous work
is included. The remainder of the report is a comprehensive
exemination of gecphysical prediction methods and their

reliability.
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ABSTRACT

Mean gravity anomaly values which represent 1° x 1° surface
areas can be predicted on the continents by geophysical gravity
correlation methods whether or not measured gravity data exists
within those 1° x 1° areas. These methods take into consideraticn
the earth's structure, composition, and response to changes in
surficial mass distribution by means of observed or computed
correlations between gravity and other geophysical parameters within
geologie/tectonic provinces. Linear basic prediction functions,
used to describe and predict the relationships between gravity and
elevation, are shown to be a natursl consequence of the properties of
gravity reduction procedures and the observed behavior of gravity
anomglies within structurally homogenous regions. The effects of
local structural variations can be computed using simple attraction
formulas or derived from systematic observation of gravity anomaly
variations which characterize different types of local structures.
With little or no measured gravity data, geophysical grayity
predictions haeve an accuracy range of + 5 to + 20 milligals. With

mor: adequate amounts of measured data, accuracies of + 1 to + 2

miliigals can be achieved easily.
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1. INTRODICTION

1.1 The Need for Meen Gravity Anousaly Date aud the Nature of the

Problem in Gravity Prediction
The input datua required for applications of the integral

formulas of physical geodesy to compite gravimetric geoid
undulations, deflection of the vertical components, and similar
parameters includes a detailed globel representation of the earth's
gravity anomaly field. The same global representation may be

used to derive an earth gravity model, e.g., a spherical harmonic
expression of global gravity variations.

For both purposes, it is convenient to express the global
gravity anomaly field in terms of mean or average values which
represent surface areas of 1° x 1° in diuension. When needed,
mean gravity anomaly values representing larger sized surface
areas, e.g., 5° x 5°, 10° x 10°, can be obtained readily by
averaging the basic 1° x 1° "building blocks."

The 1° x 1° mean gravity ancmaly field also is useful for
geophysically analyzing semi-regional changes in gravity which
reflect the effects of all major topographic and geologic changes
esgociated with mass inequalities in the lithosphere. The 5° x 5°
and 10° x 10° average values can be used to study gross mass end
gecidal changes.

Global representations of the earth's geoid and gravity anomaly

field have been deduced from satellite ~rbital data considered

alone (Anderle, 1966; Guier and Newton, ' /65; Kohnlein, 1966;




Khan and Woollard, 1968) as well as in combination with surface
gravity data (Uotila, 1962; Kaula, 1963, 1966c, 1967; Khan, 1969,
1972; Beers, 1971). These global gravity representations, however,
provide only very generalized gravity anomaly expressions
(equivalent to mean ancmalies for 15° x 15° or larger areas) and,
hence, have Iimited geodetic and gecphysical application.

The best way to obtain 1° x 1° mean gravity anomaly values
is by using the gravity measurements which exist within the 1° x 21°
areas together with conventirnal, statistical, or geornysical
averaging techniques. This can be dcne only in those portions
of the world vhere gravity surveys have provided a reascnably
dense and well distributed network of gravity measur=ments.

A conslderable body of measured gravity data is now available--
the DOD Gravity Library, for example, holds more than te. million
measurements. Most of the continental data is based on the same
gravity standard and datum as a recult of the international
gravity standardization program initiated in 1948 (Woollard 1950;
Woollard and Rose, 1963).

However, measured gravity coverajge is by no means complete.
There are many large recions on t.e conti:ents where gravity
measurements are lacking or available only in sparse quantities.

In the oceans, the situation is even worse Lecause of the great
areas involved, the fact that few ships are equipped with
gravimeters, and the relatively few years in which it has been

possible to have accurate navigation at sea as well as reliable

gyrostablized shipboard gravimetric systems.
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Obviously, 1° x 1° mean gravity anomalies cannot be obtained
by averaging gravity measurements for the many large regions of
the earth's surface where an insufficient number of gravity
measurements are available. Some other approach must be used to
obtain the best possible estimate of average gravity anomely values
for such regfons.

Statistical extrapolations and the methods of satellive
geodesy can be used to obtain approximate mean values for the
gravimetrically unsurveyed areas. Since these methods have been
discussed by other authors (see, for example, Kaula, 1966a, 1966b;
Rapp, 1966) they will not be reviewed here.

Geophysical prediction using gravity correlation methods
provides an attractive alternative to the statistical-satellite
methods. With the geophysicel methods, 1° x 1° mean gravity
anomalies can be determined for any continental area whether or
not gravity measurements have been made in that area. More
specifically, the geophysical methods can improve predictions made
by other methods where some gravity measurements are available,
and can provide usable evaluated predictions where no gravity
measurements exist. A unique feature of the geophysical approach
is that the actual geological and geophysical causes of gravity
anomalies are taken into account.

Th2 fundamental premise of the geophysical methods is that

gravity anomalies can be predicted using correlations with some

combinations of earth parameter values whicn either are known or can

-~
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be readily determined. Parameters such as regional surface
elevation and age of the crust, for example, are related to
regional changes in gravity anomaly values. Local changes in
gravity anomalies are related to local changes in geology and
topography. Both types of relationships can be established
anelytically ‘or empirically and combined to predict gravity
anomalies which have considerable geodetic value.

The geophysicel prgdiction methods are based on the concept
that the lithosphere, on a regional basis, is inherently week and
in isostatic equilibrium with the underlying aesthenospnere.
However, these methods do not assume that zero isostatic and free
air gravity anomalies are associated with equilibrium conditions.
Indeed, Woollard and Strange (1966) have shown that zero free
air and isostatic anomalies are not to be expected, given a crust
of variable density and thickness, even under conditions of
perfect isostatic equilibrium. The recognition of these
constraints, whicn are a consequence of the proximity effect
obvicus in the Newtcnian expression for gravitational attraction,
makes it necessary to consider lithospheric structure and
composition either directly, as revealed by seismic refraction
and reflection deep soundings, or indirectly in the absence of
such data through standardized relations observed between

averaged gravity and regional elevation values in different

continental areas.
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It must be recognized that the problem of mean gravity
anomaly prediction is not a simple one. The complex structure
and composition of the lithosphere which exists today has evolved
over a time span of a billion years or longer. Changing patterns
and locations of orogenic events have resulted in the creation of a
nmore heterogeneous mass distribution rather than s more homogeneous
one. Consider, for example, the effects of lithospheric subduction
and obduction at crustal plate boundaries. The resulting
mechanical displacements in plate mass, the selective melting of
mobile components in a deeper, hotter environment with Llhe
subsequent, intrusion, volcanism, thermal and pressure metamorphism
have led to uplift in the orogenic belts. Many such belts have
een eroded away and then buried under the detrital material of
vounger orogenic belts. Yet, the root effects of the older belts
rsist as mass anomalies in the crust. Consider glso that the
spreading centers have shifted in lpcation, have been dispiaced
along major transform faults, and even have been overridden by
migrating continental blocks, thereby generating abnormal crustal
and gravity relations.
in addition to the above effects, there have been prolonged
periods of worldwide volcanic activity (for example, during
Triassic-Jurassic time), periods of worldwide continental flooding
by the oceans (for >xample, during Cretacious time), and periocs
of extensive worldwide glaciation and de-glaciation. In each

case, the resulting changes in surface mass distribution have

resulted in a differential vertical displacemert of the

-~




lithcsphere and its boundary witi respect to the underlying .

aesthenosphere. The earth's crust does adjust for these )
changes in mass distribution through the isostatic mechanism. Iﬁ
Such an adjustment, subsequent to the removal of the Pleistocene

ice caps in Eurupe and North America, can be observed in even the :
. short pefiod.bf a decade by the rising of Fenno-Scandenavia and
eastern Canada as measured by repeated levelling. There is, thus, f
a time lag between changes in surface mass distributions and the ' {

achievement of isostatic equilibrium.

The effects of the time lag are also evident in the case of

the Rocky Mountains. Although the Rockies were base levelled in

Eocene to Miocene time, 17-L40 million years vefore present time
(MYBP), they now stand 6000 feet or more above the surrounding '
terrane. The much older Appalachian Mountains show remnant |
peneplains of at least two such cycles of base levelling and
rejuvenation caused by the time lag in the isostatic adjustment
cycle.

The mechanism involved in isostatic adjustment is plastic ’
flow and viscous creep. This process is much slower than surface
erosion. Furthermore, isostatic adjustment involves total crustal
mass movement and momentum and not just surficial mass removal
and transfer as with surfece erosion.

The combination of the earth responding differentially at
its surface to internal dynamic forces, with the attendant tectonic

and compositional changes in its outer layer, and adjusting

isostatically (but with an out of phase time lag) for changes in




surficial mass distribution causes isostatic equilibrium to be
only en average condition for the earth as a whole. Isostatic
equilibrium, thus, is not realized on a semi-continental or even
continental sized basis, and certainiy not on a 1° x 1° sized basis.
Even where there is local isostatic equilibrium, it does not follow
that there will be zero free &air and isostatic gravity ancmalies.

Because of the above considerations, statistical approaches
to the prediction of gravity on a global basis do not have general
applicability. Rather, it has been necessary to use empirical
relations determined for application to specific regions. These
relations, in effect, take into account the complexity of the
underlying lithospheric structure and composition as well as the
geologic history of regions comprising the domains in which a
given empirical relation has general application. The present
study, therefore, incorporates a tacit recognition of the
complexities of lithospheric structure, composition, and response
to changes in surficial mass distribution. It is evident that
all these factors must be considered if gravity is to be predicted
with any degree of reliability.

Included in the present study are: (1) a review of the
geophysical methods which have proven to be the most effective in
predicting gravity aromaly values; (2) the writer's analysis as

to why these methods are effective; and (3) the writer's contributions

towards making these methods more reliatle and exact.




Some recent studies have suggested that a combined statistical--
geophysical approach to gravity prediction is highly desirable (Wilcox,
1971) especially if a single "best" prediction method can be developed
(Lebart, 1972). However, because of the complexities of earth
structure and geologic history, it is quite unlikely that a single
"best" predict;on method really exists. Indeed, there are a number
of rather different geophysical prediction methods, each of whicn
vorks well in some situations, poorly in others. Thus, it seems better
to inject statisticil rigor into each of the geophysical methods.

This has been done insofar as possible.

The prediction of mean gravity anomaly values for areas smaller
than 1° x 1°, e.g., 1' x 1', 5' x 5', is not considered in this study.
Gecphysical prediction of mean values for such small sized areas, in
general, cannot be justified in terms of increased precision for the
1° x 1° values obtained as averages of the smaller sized means.
Prediction of the smaller sized means, per se, presents an entirely
different and more complex set of problems than does prediction of
1° x 1° means. The smaller sized means, for example, are extremely
sensitive to very local topographic and geologic changes. Further,
these changes seldom conform to any “ixed grid system such as is
generally used in 1° x 1° prediction. Thus, each prediction for a
small sized area has to be handled on an individual basis--a time
consuming and costly process. Geophysical predictions certainly can

be and are made for the small sized areas, when required, but the

methods used are other than those contained in this study.




1.2 Gravity Correlations

Gravity correlatiors is the study and appliration of numerical d
A interrelationships (i.e., do;relations) between variations in the
gravity anomaly field 2ud corresponding variations in geological,

W 3 crustal, and u?per mantle structure, regional and local topography, {
and various other types of related geophysical data. Examples of

well kncwn gravity correlations are (1) the inverse relationship

bet cen regional elevation and regional Bouguer gravity anomalies,
L and (2) the association of local minimums in the gravity anomaly

field with certain types of sedimentary basins.

v

Geophysical correlations, a term having a somewhat broader
rneaning than gravity correlations, is the study and appli‘ation of

numerical interrelationships between any set of geophysical parameters.

P Gravity correlations draw upon many branches of earth science.
d Geology provides data pertaining to local geologic'structure, rock
+ density, and geotectonics. Geodesy provides methods for gravity

} , reduction and analysis plus the theories of isostasy. Celestial

| mechanics, applied to artificial earth satellites, provides an
indication of global scale density ancmalies in the upper portions of
the earth. GJeismology provides knowledge of crustal and upper mantle
structure. Cartography provides topographic maps giving elevation
data. Magnetic anomaly data assists in the interpretation of geologic
and crustal structure. Analysis of heat flow data provides additionzl
insight into the intricacies of crustal and upper mantle structure.

\ Although the term, gravity correlations, is relatively new,

gravity correlations relationships have been studied and used for




many years. Geologists, for example, have used variations in the
gravity anomaly field to assist in the interpretation of geologic
structure. Similarly, geophysicists have used the gravity anomaly
field as a tool in the interpretation of crustal and upper mantle
structure. The application of gravity correlations discussed in this
study are the reverse of these "classical" uses. Here, known geologic

and crustal structure is used to predict the gravity anomaly field.

1.3 Gravity Prediction

The term, gravity prediction, has been used in the literature
to denote any process which enables the estimation of a gravity anomaly
value (1) for any point (i.e., site) at which the acceleration of
gravity has not teen measured, or (2) which represents the average
gravity anomaly value within a given surface area--whether or not
the acceleration of gravity has been measured at points within
that surface area. Thus, gravity prediction may involve interpclation,
extrapolation, or both.

Ls used in this study, gravity prediction refers to the
application of gravity correlation methods to estimate 1° x 1° mean
gravity wnomaly values for continental regions of the earth's surface,
especially those regions which contain a few or no gravity measurements.

Gravity prediction using gravity correlations generally involves
(1) an analysis of the numerical interrelationships between the gravity
anomaly field and geological, geophysical, and topographic data within
regions of the earth's surfece where variations in the gravity anomaly

field are well defined by gravity observations, and (2) application

el T
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of appropriate correlations determined by (1) to predict gravity anomaly
values for 1° x 1° areas within regions of the earth's surface where
gravity measurements are lacking or avuilable only in sparse
quantities. Geologic, geophysical, and topographic data is generally
available in sufficient quality and quantity to support gravity
predictions us;ng gravity correlations in most continental zreas.

Gravity correlation technology has advanced steadily over the
past few years, and gravity predictiocns now can be made for any
continental 1° x 1° area. Remarkably accurate results are obtained
in many instances, althoug- uniformly reliable predictions cannot be
made in all situations where gravity measurements are lacking. 1In
the latter case, however, gravity correlation produced 1° x 1° mean
anomaly predictions always provide a usable approximation of the true

value--probably the best estimate of the 1° x 1° mean gravity anomaly

field for regions in which gravity measurements are not available.

1.4 Gravity Interpolation

Gravity interpolation is any process which enables the estimation
of gravity anomaly values for points or areas located between or
among sites of gravity observations. Gravity interpolation by gravity

correiations is most often used to densify a field of existing gravity

anomaly values during a gravity prediction operation.
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2. HISTORICAL BACKGROUND

The basic principles of gravity correlations have been used for
many years in geophysical exploration studies and in the interpretation
7‘ of geologic structure. Paving the way for later gravity prediction
applications ;as the work of George P. Woollard who, in the
1930-1960 time period, published many careful and extensive
analyses of the geological and geophysical accountability of gravity

anomaly variations.

The specific application of gravity correlations to gravity

-

prediction is a comparatively recert development. Pioneering
the geophysical gravity prediction movement was William P. Durbin, Jr.

(1961a, 1961b, 1966) who first suggested the possibility of

estimavting gravity anomaly values using gravity--geology
. correlations, then demonstrated the feasibility of the idea by
constructing egravity anomaly maps btased upon geologic evidence
} / for the south central United States.
| Tre carliest known application of geologic data to evaluate
}‘ and predict 1° x 1° mean gravity anomalies is the work of
Pothermel et al. (19€3).
Geophysical data was added to geologic data as a basis for
cravity prediction by George P. Woollard (1962) who publisied
2 document which has come to be regarded as a fundamental gravity

correlations reference manual. Since then, Woollard and his
>

\ associates at the University of Hawaii have published several

L
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additional works giving further development to gravity correlations

as a method of gravity analysis, interpolation, and prediction
(Strange and Woollard, 196ka; Woollard, 1966, 1968b, 1968c, 1969a).
Practical methods for prediction or 1° x 1° mean gravity
anomalies using gravity correlations first appeared in 196L. At
the USAF Aero;autical Chart & Information Center (ACIC), now the {
Defense Mapping Agency Aerospace Cente: (DMAAC), Rothermel (196k) o
developed a number of methcds including the original version of
the GRADE i1nterpolation and prediction technique. At the University
of Hawaii, Strange and Woollard (156Lb) proposed a method which
was to be the forerunner of the NOGAP prediction technique and
demonstrated its reliability in the United States. A modified
version ot the technique (GAPFREE) was published twc years later
(Woollard and Strange, 1966). The original version cf the GAIN
interpolation method was described by Sfrange and Woollard {196ka)
and applied in Wyoming with good success.
The NOGAP prediction method has been applied with modifications
by Wocllard and his associates to geophysically predict and
evaluate mean gravity anomalies for East Asia (Woollard and Fan,
1967), Mexico (Woollard, 1968a), and Europe (Woollard, 1969b).
Much of the gravity correlation research and mean anomuly
prediction work of the University of Hawaii has beei done under
contract to ACIC and DMAAC.
In 1966, a gravity correlations working group was established

at ACIC. This group under the direction of the writer further

developed and refined the geophysical prediction methods, and
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began a program to use these methods to systematically predict !

1° x 1° mean gravity anomalies for all continentel and oceanic .

areas which contain few or no gravity measurements. The group
also investigated the use of geophysical methods for gravity
interpolation (Wilcox, 1967) and for prediction of mean anomalies
to represent large sized surface areas (Wilcox, 1966). Other i
major contributions of the group include the standardization of
gecphysical gravity prediction techniques (Wilcox, 1968), the
development of the EXGAP prediction procedure by L. E. Wilcox in
1968 (revised in 1973), and the development of the UNGAP method
by J. T. Voss in 1972.

By 1971, the ACIC group had completed predictions for the
entire Eurasian continent. This work was published in the form
2f a Bouguer gravity anomaly map (USAF ACIC, 197la; Wilcox et al.,
1972) and a geoid (Durbin et al., 1972). The mean anomalies
were also made evailable in the form of a mean gravity anomalj
tabulation (USAF ACIC, 1971b). Predictions for all of Africu
and South America were completed in 1973 and published in the
form of Bouguer anomaly maps (Slettene et al., 1973; Breville
st al., 1973). Work is continuing at DMAAC to complete 1° x 1°
mean anomaly predictions for other continental areas and, in
conjuuction with the University of Hawali, to develop geophysical
prediction techniques suitable for application in oceanic areas

(Woollard and Daugherty, 1970, 1973; Khan et al., 1971; Woollard

end Khan, 1972; Daugherty, 1973; Woollard, 197k4).
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A multiple regression approach, in which several geophysical
correlations are combined to predict gravity anomalies, has been
tested successfully in the United States, Western Europe, and
Australia by Vincent and Strange (1970).

Free air anomaly maps compiled using observed and geophysically
predicted anomalies have been published by Strange (1972).

It is especially gratifying to note that in the past two
or three years, there has been & general birth of interest among
geodesists in the geophysical accountebility of gravity variations.
In fact, no less than cne~-third of the sessions at the International
Symposium on Earth Gravity Models, held at St. Louis on August 16-18,
1972, were devoted to geophysical problems. A portion of the new
interest in "geophysical geodesy" has been generated, no doubt,
by the new theory of plate tectonics~~which has had an overall
unifying effect on the earth sciences. However, part of the
interest must be attributed to the gravity correlation pioneers
of the early 1960's who paved the way for making geophysics

an integral part of geodesy.
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"3. THEORETICAL BACKGROUND

3.1 Observed Gravity

The acceleration of gravity at any discrete point on the
physical surface of the earth is generated by all of the masses
contained within the real earth. The value for the acceleraticn
of gravity at any surface point, obtained by suitably adjusted and
corrected gravity measurements, is known as "observed gravity," g, -
For the purposes of gravity predicticn, observed gravity, as
obtained by modern land gravity measurements, may be considered
to be error free.

The existence of mountains, ocean basins, and other
topographic structures is direct evidence that the masses withinu
the earth are irregularly distributed at the surface, and
interpretations of seismic data have provided indirect evidence of
the existence of irregularities in mass distribution within the
earth's interior. These mass distritution irregularities must
be the source cf the irregular variastions which are found in the
earth's observed gravity field.

3.2 Normal Gravity

Normal gravity is a computed value which refers to the suriace
of the normal earth, i.e., the normal ellipsoid chosen to reprasent
the earth. Values of normal gravity vary as a regular runction of
latitude only. The overall magnitude of the normal gravity field

depends upon constants whici: express the size, shape, and rate of

rotation ef the normal ellipsoid.

————
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The ncrmal grévity field represents the attraction of an
idealized fluid earth whose masses are assumed to be in complete
equilibrium and symmetrically distributed with respect to the
rotation axis and equator. The mass of the normal earth is,
by definition, equal to the mass of the real earth. Such a model
is geophysically reasonable and will generate the regular normal
gravity field. An exact structure-density model of the normal
earth is of no great interest either to geodesy or geophysics
and, in fact, an exact zeophysically reasonable model of the

normal earth has never oeel derived.

3.3 Gravity Anomaly

3.3.1 Geodetic Definition

A gravity anomaly is the difference between the
observed graviivy and normal gravity at a given location. 1In
ciassical geodetic applications, the point of comparison is the
point on the geoid directly below the point where gravity is
observed. The method used to reduce the observed value of
gravity to an equivalent value at sea level {(on the geoid)

determines the type of gravity anomaly obtained.

bg = (g +dg) - v (3.3-1)
where
Ag = gravity anomaly
go = observed gravity on the physical surface of the earth
at elevation h = ho
h = the orthometric height above sea level

—~a
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y = normal gravity computed on the e lipsoid directly below \
the point at which gravity is observed 2
Ggo = reduction applied to gravity observed at elevation :
h = ho, to obtain an equivalent value at sea level, \
h=20
Note that observed gravity is reduced to a point on :
the geoid and normal gravit~ is computed at a point on the {
2llipsoid. In general, t! » twe points do not coincide and this ' ;
fact is of some imports to geodesy. However, for geophysical '

analysis purposes, the point c¢f comparison for both quantities is
assumed to be located on the geoid.
Application of the reduction, Ggo, actually accomplishes
two physical operations by the computation: (1) all earth mass
above sea level is either meved inside of the geoid (e.g., free-air
reduction, isostatic reduction) or removed entirely (e.g., Bouguer
reduction), and (2) the observed gravity value is lowered from the
physical surface to sea level. The physical significance of this
two step cperation is that no mass remains outside of the point r
of comparison after Ggo is applied, i.e., there is no gravitational

component directed upward.

3.3.2 Gesphysical Definition

Being the difference between the observed and normal
values of gravity, a gravity anomaly must retlect the difference

between the true and normal mass distributions within the eearth.

bg = My - M (3.3-2)
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where

MT = the anomalous mass distribution within the real earth

MN = the regular mass distribution within the normal earth

When the regular normal gravity field is subtracted

from the irregular observed gravity field, the remainder--the
gravity anomalies--are eczzzbially just the irreguliarities in the
observed gravity field caused by the anomalous mass distribution
within the real earth. Application of the reduction, Ggo, in
computing the gravity anomalies superimposes certain additional
effects onto those caused by the mass distribution irregularities.
One effect of the Bouguer reduction, for example, is that the
irregularities in observed graviuy caused by local topographic
variations are filtered out. The nature of the superimposed

effects depends upor the properties of the type of reduction used.

3.4 Global, Regional, and Local Gravity Anomaly Varistions

Analysis of the gravity anomaly field with respect to its
regional and residual components, a technique used extensively in
geophysical exploration (geopnysical prospecting) work, has proven
to be very convenient for gravity correlation studies and, thus,
has been adopted in the NOGAP and other geophysical gravity anomaly
prediction methods. Because of a basic difference in definition,
however, the term "local” replaces the term "residual” for gravity
prediction application.

The purpose of regional-local (or regional-residval)

sepuration always is to isolate elements of the gravity anomaly

field which can be interpreted with respect to particular geological
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or geophysical eleﬁents. In the case of geophysical exploration
applicatious, only the residual gravity anomaly variations are of
practical interest. Both components are important for geophysical
gravity prediction.

The many methods of regional-residual separation which have
been proposed’'for geophysical prospecting purposes (see, for example,
Agocs, 1951; Nettleton, 1954; and Simpson, 1954) all involve a
smoothing of the gravity anomaly field according to some mathematical
or graphical criteria. The smoothed field is interpreted as the
regional component and the difference (i.e., residual) between the
gravity anomaly field and the smoothed field is taken as the
residual component. The degree of smoothing applied varies
depending upon the criteria chosen and, as a result, the process
of regional-residual separation is highly subjective.

For gravity prediction purposes, regional gravity anomaly
variations are defined to be that portion of the gravity anomaly
variations caused by mass distribution irregularities in the
crust and by regional topography and the degree of its isostatic
compensation. Prediction of regional gravity effects, therefore,
is based upon correlation between regional topography and regional
gravity with due consideration being given to isostatic effects,
and by analysis of the gravitational effects of regional changes in
crustal structure.

Superimposed upon the regional variations are the local
variations defined to be that portiou cof the gravity anomely

veriations caused by mass distribution irregularities in nearby

(local) surface geologic structure and by local topography.

~
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Prediction of the lccal gravity effects, then, is a function of
changes in surface geology as well as correlations between lccal 1L
topography and local gravity.

Although the boundary between regional and local gravity
anomaly variations is defined carefully for geophysical prediction "
methods, some logical decisions are still necessary with respect
to whether a particular structure contributes to the gravity
anomaly field in a regional or locel sense. It can be argued,
for example, that a large sedimentary basin which extends over
several 1° x 1° areas is, in fact, a recional structure. i
However, in some prediction methods the gravitational effect of
such basins is most conveniently predicted in terms of its local
perturbations on a regional field defined by a basic predictor.
Hence, the gravity anomaly effect of sedimentary basins is
considered to be local for such methods.

In addition to the local and regicnal gravity anomaly
variations discussed in the preceding paragraphs, there are also
longer period or global variations. A gravity anomaly representation
obtained by harmonic analysis of the perturbaticns of artificial
earth satellites shows only the longer period or global variations.
To date, these global variations have been correlated with known
structural variations only in a qualitative sense. Kaula (1969,
1970), for example, suggests that, with some exceptions, global
positives tend to be correlated with active tectonic departures

from equilibrium which, in turn, are correlated with areas of

current dynamic activity at the earth's surface and reflect internal




dynamic activity. At present, these internal processes are not J
sufficiently understood tu enable their use for preiiction of
global gravity variations. Fortunately, it hardly scems necessary ‘{
to develop a geophysical method to predict the longer period
variations per se since the global gravity fields derived from
satellite perturbation analysis caen be used for this purpose.
Woollard and Khan (1972) have confirmed the desirability of 1
analyzing the gravity anomaly field in terms of three components:
(1) a short wavelength component depending upon local topography,
local geology, and their mode of emplacement; (2) an intermediate
wavelength component depending upon regional topographic and
tectonic patterns and their isostatic compensation, and (3) a
long wavelengt:, component depending upon global scale morphological
aixd tectonic patterns. Table 3-1 compares this tiiree component
scheme to the classical two component scheme, the latter being
modified to include thie global component. The two schemes &are
seen to be completely compatible. In current geophysical
prediction methodologv, however, the global and regional .
contributions to the gravity anomaly are predicted as & single

component.

3.5 Mean Gravity Anomalies

3.5.1 Geodetic Uses

Gravity is measured and gravit, anomalies are computed
at discrete points ca the surface of the earth. Yet, the integral

formulas usrd for most geodetic applications require a knowledge of
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COMPARISON OF GRAVITY CORRELATION

ANOMALY ANALYSIS SCHEMES

Expanded Classical
Gravity Analysis
System

Woollard~-Khan
Gravity Analysis
System

Local

- near surface geologic
structure

- local topography

Short Wavelength
- local topography
- local geology

- mode of emplacement

Regional
- crustal structure
- regional topography

- degree of isostatic
compensation

Intermediate Wavelength

~ regional topography

- regional tectonic patterns

- isostatic compensation

Global
- geodynamic processes

- mantle structure

Long Wavelength

- global morphology

- global tectonic patterns

et T
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gravity anomaly data continuously over the whole earth. Examples f
of these integral formulas are (Heiskanen and Moritz, 1967)
’ T\'!:—B— [ [ '
i LG ) ) Ag S(V) do
o
\
£ : cos a
Ll I J as
= T b8 5 do (3.5-1)
o
n sin o
; cos mi
nm
L e,
= == Ag P sir. do
LL i ] g P (sir¢)
S ) sin m
nm
vhere
N = gravimetric geoid height
£, n = gravimetric deflection of the vertical components
;;m’ g;m = fully normalized harmonic coefficients of degree, n,
~ and order, m, for an earth gravity modei

Ag = gravity anomaly representing the differential surface
element, do
S(y) = Stokes' function
E;m {sin¢) = fully normalized Legendre's associated function
a, ¥ = Spherical polar coordinates
¢, A = Geodetic latitude and longitude

R, G = constants

denotes integration over the whole earth
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For practical evaluation of the integral rormulas
(3.5~1) summation over finite surface elements replaces the 4
integration over differential elements. Therefore, in the
practical case, the gravity anomaly input must be in the form of
values ™ ch represent finite surface areas, e.g., 5' x 5',
1° x 1°, etc ean gravity anomalies, predicted as a function of f
the gravity anomalies computed from measurements at discrete
points over the surface, serve as the required input data.

3.5.2 FLefinition: Comments on Prediction Methods

A mean gravity anomaly is defined as the mean value
of the gravity anomaly field within a specified surface area.
A 1° x 1° m=an Bouguer snomaly, for example, is the average
value of an infinite number of Bouguer anomalies computed at
measurement sites which are evenly distributed throughout the
1° x 1° area.

The rigorous formula for 1° x 1° mean gravity
anomaly, Ag, which represents a rectangular 1° x 1° surface area

with dimensions a and b is (Heiskanen and Moritz, 1967)

a b
.= Ag (x, y) dxdy (3.5-2)

x=0 y=0
where the gravity anomaly, Ag, must be known at every point (x, y)
within the 1° x 1° area. If the Ag (x, y) are free air anomalies,

Ag is a 1° x 1° mean free air anomaly. If the Ag (x, y) are

Bouguer anomalies, Ag is a 1° x 1° mean Bouguer anomaly.




26

Since gravity is measured at only a finite number of
discrete points within any surface area, equation (3.5-2) never can
be evaluated in the given form. Instead, the 1° x 1° mean anomalr,
Bz, can be approximated by a linear combinaticn of the measured

values, Agi (Heiskanen and Moritz, 1967)

n
g=1 olg (3.5-3)
i=1

The coefficients, e, which depend only upon the
relative positions of the gravity measurements and mean anomaly
value, may be chosen in several ways. In least squares (statistical)
prediction, for example, the ai are determined so that the standard
error of prediction is minimized. With a large value of n for
gravity measurasments well distributed throughout the 1° x 1°
area, setting all values of a, = 1/n gives the required mean

value.

g:

[~ =

(3.5-4)

[ e B
C>
1]

i=1
Formula (3.5-4) applies to Bouguer anomalies in
continental areas. If free air anomalies are used within *he

continents. a correction must be added to (3.5-L4) to account for

the difference vetween the mean elevation, ﬁ; of the arez and

the average, E, of the elevations at the points where Agi is
observed. The correction is computed using equation (3.6-25)

where (AgF) represents the average of the observed free air anomaly

Q
values, (AgF)P represents the true 1° x 1° mean free air anomaly, and

§h = H - h.




With fewer measurements and/or uneven distribution of
measurements within a surface erea, an isoanomaly map can te
constructed using linear interpolation, modified by geological
considerations, of the Bouguer anomalies. Then the integration
(3.5-2) can be performed gravhically with reference to the Bouguer
anomaly map. bome additional Bouguer anownaly values may be
obtained by fravity correlation interpolation between measurernient !

sites to supplement the measured values used to construct the

gravity anomaly contours. The GRADE prediction method uses

—r—

this approach.
The 1° x 1° mesn gravity ancmalies also may be
predicted with direct reference to correlations between

variations in geological/geophysical/topographic parameters and

the corresponding variations in mean gravity anomely values. In

. this case

} dég = f{dn, d4%) (2.5-5)
waere ?(dﬁ, dg) is some function of topographic and structural
changes, respectively. 1f, for example, the chanres ia the regional
part cof the 1° x 1° mean gravity anomalies are constant with

10 e

respect t0 changes in mean elevations, which is true for 1" x 1

mean Bouguer anomalies and mean elevations in many regions, then

de o g (3.5-6)

) or, in a slightly modificd form,

dbg = B dn (

(98]
.
wn
[
—~J
~—
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Integration of the above gives, immediately,

g=8h+a (3.5-8)
which is “he equation for the basic predictcr in the NOGAP
prediction method. Equations such as (3.5-5) and (3.5-8) can
be defined in Eortions of an area having uniform regional structure
and adequate gravity measurements, and used as prediction functions
in other portions of the same area which contain little or no
measured gravity data.

Although geophysical constraints are sometimes
included in the formulations, statistical mean anomaly prediction
procedures, using equations such as (3.5~3) typically are based
primarily upon an expression of the manner in which the gravity
anomaly field varies with respect to itself within a given region.
To simplify the mathematical expressions involved, such variations
are assumed to be isotropic when, in reality, they usually are
not. The invalidity of this assumption eppears to place a severe
constraint on the applicability of statistical prediction.

By contrast, although statistical procedures are often
used in the fomulations, geophysical mean anomaly predictions, using
equations such as (3.5-8), are based primarily on expressions of
the manner in which the gravity anomaly field varies with respect
to some other physical parameter within a structurally homogeneous

region. Such variations usually are isotropic, and this fact

strengthens the validity of the geophysical prediction methods.

-~
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3.5.3 Mean vs. Point Anomalies

Point gravity anomalies fully reflect all effects of
regional and local variations in earth structure. Mean gravity
anomalies which represent surface areas of 19 x 1° or larger, on
the other hand, are essentially regional anomalies since much
(but not 211) éf the effect of local structural variations is
lost in the averaging process which produces the mean anomaly.

A local mass anomaly of small areal extent, such as an ultra-basic
dike, may have a pronounced local effect upon a point #nomaly,

but virtually no effect upon a 1° x 1° mean aromaly. Larger local
geologic features, such as sedimentary basins, will affect both
poirt and mean anomalies in a similar (but not identical) way.
Local anomaly effects, therefore, must be analyzed specifically
with respect to the type of anomaly, point or mean, which is

being ccisidered.

Thus, the details of local gravity anomaly variations
must be studied in terms of point anomalies, whereas the regional
gravity variations are conveniently analyzed in terms of the
meén gravity anomalies. In fact, the regional anomaly field
reflected in 1° x 1° mean anomaly values is contaminated only by
the effects of fairly broad local structural variations. 1t is

the gravitational effects of these brnaa local variations which

o]

mean anomaly predictions.

must be determined in 1° x i
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3.5.4 Mean Elevation

The elevation value corresponding to the mean gravity

anomaly (3.5-2) is the mean elevation, H, given by

a b
H= ig j j h(x, y) dxdy (3.5-9)

x=0 y=0
where h is the elevation at every point (x, y) within the area.

Mean elevations are determined by graphical integration from

topographic maps.

3.6 Free Air Anomaly

3.6.1 Complete Free Air Reduction¥*; Simple Free Air Reduction

Two steps are necessary to obtain -. vuc-retically
rorrect free air gravity anomaly, Figure 3-1. Firstly, all masses
above sca level are "condensed" vertically to form an infinitesimally
thin surface mass which is placed just underneath the geoid. The
density, x, of this surface mass at any point, Q, vertically

beneath the point, P, on the physical surface, is given by

kK = oh (3.6-1)

*The non-standard terminology, 'complete free air reduction,” is
used for descriptive clarity. The *type of complete free air

reduction described here is attributed to Helmert and iz usually

called Helmert's condensation reduction.




where ?

h is the elevation of P above sea level J

0 is the average density of the topographic masses between '
F and Q. .
3 At the completion of the first step, the topographic

’ i masses have been removed, an equivalent mass has been inserted

at elevetion h=0 in the form of a surface layer, and a gravity
observation at point P is now situated "in free air" at an elevation,
h, above sea level. In the second step of the complete free air

L reduction, the gravity observation is lowered "through free air"

: to sea level. ;

The gravitational effects of both steps are determined

computationally and combined to obtain the complete free air

Jhase

reduction, (5go .

(GgO)F = - Bp tEg e (3.6-2)

S

where
"/ gT = gravitaticnal attraction at P of the volume mass f
} constituting the topography which is removed in step 1.
g. = gravitational attraction at P of the surface mass which

is inserted just under the geoid in step 1.
g. = free air correction, step 2, which lowers the observation

from P to sea level at Q.

Except for areas of very rugged topography, the gravitaticnn

effect of the surface layer is very nearly equal to the gravitation<.l

attraction of the topography. Therefore, with good approximation
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FIGURE 3-1

ILLUSTRATION OF COMPUTATIONAL STEPS NECESSARY

TO OBTAIN THEORETICALLY CORRECT

FREE AIR ANOMALY

o~
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TOPOGRAPHIC MASSES SHADED

Point, P, on physical surface
Point, Q, vertically below P on geoid surface

o

._...-...--. 4 o]

STEP 1. Remove topographic masses completely.

Point, P, now situated in free air at elevation, h, above geoid.

®T

V)Ll by
///ﬂ/ L™ llz,,.

o~

STEP 2. Lower observed gravity value through free air to sea level.
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for most cases, the assumption

g = (3.6-3)

is made ard equation (3.6-2) reduces to the simple free air reduction

(54;0)F = & (3.6-4)
end inserting *(3.6~l4) into (3.3-1), the simple free air gravity

ancmaly, AgF, is given by

Mgn = 8y * 8p = ¥ (3.6-5)

3.6.2 Free Air Correction

The free air correction gives the difference between
gravity at the point P on the earth's physical surface where
gravity is observed and at the point § on the geoid, where Q
lies vertically beneath P at a distance, h. It is assumed that no
rock matter exists between P and Q, Figure 3-1, step 2.

Under the condition that no matter lies between
P and Q, gravity and its derivatives of all orders exist and vary
as continuous functions of elevation between these points.

Therefore, the necessary conditions are fulfilled for application

of the Taylor (Maclaurin) Series

g (z) =g (0) +g" {(0) z+%g" (0)22+ ... (3.6-6)

where the primes indicate differentiation.
In the present case, g (z) = gp, gravity observed at
elevation h; g (0) = gQ, gravity at sea level, h = 0; and z = -h

where the negative sign is required because elevation increases

outward while gravity increases inward. With these definitions
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{
the series (3.6-6) becomes 3
v
i, g, ,13% » N {
gp=gy - Envilne . (3.6-7)
or, solving for gravity at the geoid .
]

S, &, 1% .,
8% "% 7 o 2 T (3.6-8) i

The quadratic term of (3.6-8) contributes 726 x 10 10
h? mgals/meter. This amounts tc less than one mgal unless gravity ‘
is observed at elevations in excess of 12,000 feet above sea level.
Therefore, the quadratic term is always omitted except when gravity
is observed in the highest mountains.

Evaluation of the linear term of (3.6-8) requires a
knowledge of the vertical gradient of gravity, 3g/dh, which varies
as a function of latitude, height, and near surface mass distribution.
However, the variation is sufficiently small to enable the use of
a constant value for 3g/%h for many practical purposes (Heiskanen
and Moritz, 1967). To obtain this constant, consider Newton's

law of gravitation for a normal spherical earth

km
il = (3.6-9)
where
Y = normel gravity
k = gravitational constant
m = mass of the earth

radius of curvature of the normal earth

=
n
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The vertical derivative of (3.6-9) is

3y . 3y _ _ 3 Jm _ 2km )
T Be T e e (3.6-10)

where the negative derivative is used because elevation, h, is
positive outward while normal gravity is positive inward.

Substituting (3.6-9) into (3.6-10) leaves

& _ &y e
ah - r (306 11)

Insertion of average values for y and r into (3.6-11)

gives the constant value

3 - 38 _ =
el 0.3086 mgal/meter. (3.6-12)

Detailed discussions of more exact expressions for
3g/3h, and of the approximations involved in obtaining the constant
value (3.6-12) may be found in Heiskanen and Moritz, 1967, and

Bomford, 1971.

The final form for the free air correction, using

only linear terms of (3.6-8) with (3.6-12) is

= -g-%h = 0.3086 h (3.6-13)

where h is in meters. Insertion of (3.6-13) into (3.6-5) gives,

for the simple free air anomaly
bg, = g, + 0.3086 h - v (3.6-4)

3.6.3 Geophysical Properties of the Free Air Anomaly

Observed gravity corrected to sea level by the free

air reduction, (go + gF), measures the force of gravity generated

by the real earth and includes all gravitational effects of (1) the
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topographic masses and (2) the other lateral density variations
within the real earth. Normal gravity, v, measures the force of
gravity generated by the normal earth which has neither topographic
masses nor irregular density variations. Yet the total mass of

the normal earth which generates y is defined as being equal to

the total mass of the real earth which generatec (go + gF).

Therefore, the free air anomaly computed according to (3.6-5)

= + -
bg, = () + &g) - v
is simply a measure of all gravitational differences between the

irregular mess distribution within the real earth and the regular

mass distribution within the normal earth.

3.6.3.1 Isostasy and the Free Air Anomaly

The topographic masses, condensed cnto the
geoid sufface of the real earth by the free air reduction,
unquestionably represent a gross excess of mass with respect to
the normal sea level earth which has no mass above sea level.
Consequently, there ought to be a strong direct correlation
between elevation and the free air gravity anomaly and in fact,
such a correlation does exist in most areas--but only on a local
basis. On a regional basis there is, at best, only a miid
correlation between elevaticn and free air anomaly. In fact,
free air anomaly values for gravity observations located on broad
regional topograpnic features, such as plateaus, tend to average

near zero and, on a global basisg, the most probable free air

anomaly value is zero.
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The lack of any strong regional correlation !

between elevation and free air ancmaly means that, on a regional o

basis, the mass excess due to topography must be nearly cancelled &

out, i.e., isostatically balanced, by some compensating mass T‘

deficiency within the real earth. ‘
! On a global busis, isostatic ccuapensation i

of the topographic masses is nearly complete. Regionally, however,

the gravitational balance usually is not exact. Since regional :

departures from iszostatic balance are fully reflected in regional

free air anomaly values, the effects of regional structures on the

free air gravity anomaly field always must be considered with

respect to the degree of isostatic compensation which exists

within the region.

The existence of a strong local correlation
between free air anomaly and elevation suggests that local topographic
variations and, hence, local density variations of any type are
either very poorly compensated or not compensated at all. In other
words the full gravitational effects of local topographic and
structural variations are reflected in local free air anomaly
variations without reference to compensation effects.

The wisdom of analyzing free air gravity
anomalies with respect to their regional and local components
should be immediately evident from the foregoing paragraphs.

lote, incidentally, that computation of the

free air anomaly using (3.6-14) involves no assumptions abou’

3 either rock density or the nature of the isostatic mechanism.
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Therefore, use of the free air anomaly provides suhst.atial freedom

in the interpretation of geological and geophysical structures 1‘

which produce the anomaly. Such freedom is not possible with the

isostatic anomaly forms whi-h are computed with respect to rock

density assumptions and tied to earth structural models both

of which are now known to be incorrect. '}
The foregoing advantage of free air anomalies

is, to a major degree, offset by a disadvantage which is particularly ‘

troublesome in mountainous areas, namely, the extreme sensitivity

of free air anomalies to local elevation changes and the consequent {

masking of local geologic effects. 1

3.6.3.2 Local Variations in the Free Air Anomaly

The specific nature of the variations of .
the free air anomalies within a local area depends largely upon
the topographic characteristics of that area.
With flat to low surface relief, the free
air anomalies tend to have small magnitudes and are as likely to .
be positive as negative. Any local variations in the free air
anomalies within such localities are caused by uncompensated
local geologic variations. Local positives, for example, may
reflect higher density rocks or structural uplifts which bring
higher density rocks nearer to the surface. Conversely, local
negatives may reflect lower density rocks or structural depressions

wvhich cause higher density rocks to be a greater distance from

the surface and/or which are filled with low density sediments.
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With moderate to high surface relief, the
free air anomalies are directly correlated with uncompensated local
topographic varialions, being highly positive on mountain peaks
and strongly negative in deep valleys. The dominant topographic
effects in such localities mask any free air gravity anomaly
variations cahsed by local geologic variations.

Consider Figure 3-2. If (1) the topograrhic
rise under point P is completely compensated, i.e., the positive
gravitational effect of the mass excess due to the hill is
cancelled out by the negative gravitational effect of some
compensating mass deficiency at depth, and (2) there are no other

lateral mass distribution variations between the points, P and Q,

then the free air anomaly at P should equal that at Q

(AgF;P = (AgF)Q (3.6-15)

or, using (3.6-1L)

(go)P - Y (go)Q -t 0.3086 hQ (3.6-16)

+ 0.3086 hP

Define the unreduced surface gravity anomaly,

Az, to be given by
12

b8y = 8y - Y { 3.6=17)

where vy is interpreted to function merely as a latitude correction
term to remove the systematic effects of the earth's flattening
from observed gravity. Thus, Ags applies at the point on the

physical surface where go is measured, and variations in Ag,
Pol

are tantamount to variations in observed gravity.
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Using the above definition of Ags, equation

(3.6-16) bezomes

(AgS)P = (AgS)Q - 0.3086 sh (3.6-18)

where

(AgS)P = (go)P - Yp = unreduced surface anomaly at P

(Ags)Q = (go)Q = YQ = unreduced surface anomaly at Q
hP = elevation at P

hQ = elevation at Q

Sh = hP - hQ

Equation (3.6-18) can hold only if the
topographic feature ac P is a regional structure such as a broad
plateau. Woollard (1962) maintains that topographic features
must be about 3° x 3° or larger ir lateral extent in order to be
completely compensated--as was assumed in deriving (3.6-18).

If the hill under point P is a local
topographic feature, it must be treated as being totally
uncompensated or nearly so. This is true because, as shown by
Woollard (1962) and Strange and Woollard (196L4), the gravitational
effect of the topography always greatly exceeds that for the
compensation for local features. This is confirmed by Jeffreys
(1970) who states that a topographic variation of small areal
extent will have the same effect on free air gravity whether the

variation is compensated or not, namely, approximately the simple

Bouguer plate effect. This relation will now be derived.
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If the hill at P (Fig.-e 3-2) is treated as '
being wholly uncompensated, then the gravitational attraction of :
the mass within the hill must be removed from observed gravity

at P and Q in order to maintain the equality (3.6-18). Thus,

(AgS)P - (gH)P = (Ags)Q + (gH)Q - 0.3086 &k (3.6-19)

where

(

gH)P = gravitational attraction ath of the mass within the
hill (Figure 3-2)
(gH)Q = gravitational attraction at @ of the mass within the
hill (Figure 3-2)
)

‘fhe sign of ( in (3.6-19) is negative

8y'p

since the removal of mass in the hill beneath P will reduce the
value of gravity measured at P. The sign of (gH)Q in (3.6-19) is
positive because the removal of mass in the hill which is situated
above Q will increase the value of gravity measured at Q.

As a first approximation, the hill under P
can be replaced by a right circular cylinder of infinite radius
and height equal to éh, i.e., the Bouguer plate of height, &h.

The sttraction at P of the rock mass contained within the Bouguer

plate is given by

8gp = 2 Tk 0 &b (3.6-20)
where
gBP = attraction of the Bouguer plate
k = gravitational constant
o = volume density of the rock matter within the Bouguer plute
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Now the attractive force computed by (3.6-20) ‘
includes not only that of the topographic mass under P, but alsc ,
that of the adjacent area shaded in Figure 3-2. In reality, the
shaded area is void of rock mass. Therefore, it is necessary to .
subtract the gravitational attraction of the shaded area from
the Bouguer pliate attraction given by (3.6-20) to cbtain just
the attractive force of the hill.

The attractive force at P of the shaded area,
Figure 3-2, is given by the terrain correction at P, TCP' Thus,
the attraction of the hill unéer P, Figure 3-2, is given exactly

by

(gH)P =2mnko 6h - TcP (3.6-21)

Within the context of the simple relationship

shown in Figure 3-2, it is obvious that the gravitational attracticn

of the hill at Q is given exactly by the terrain correction at o, TC

<

(ey)g = TC, (3.6-22)
The value of the terrain correction aprroaches
a minimum of zero in ar=as of gentle relief, a maximum of 0.05
milligals per meter in areas of very rugged relief, and averages
0.0316 milligals per meter of elevation difference (8h) for point
gravity anomalies (Voss, 1972b).

- A

Now putting (3.6-21) and (3.6-22) into (3.6-19

iz N = ™ 2 fonn
\Ags,p S (Ags)Q - 0.3086 6h + 2 m k 0 &h - TC, + 1cQ (3.6=20%)
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Converting (3.6-23) to the free air anomaly .

- Y, gives

by (3.6-14) and the definitionm, Ags = g, i

- 0.3086 h i

=Y & (AgF)P - 0.3086 hy +vp = - Q Q |

LY (AgF)

+ Yq - 0.3086 (hP -h)+2nko(h. -h)~-TC, +TC

Q P Q 13 Q
Simplification of the preceding equation

leaves

(AgF)P = (AgF)Q +27mnko éh - TLP + TCQ (3.6-24)
The density value generally used in equations

* of the type (3.6-24) is 2.67 grams per cubic centimeter (gm/cm?).

"

{
b This value is . . . & reasonable approximation for the density i

of continental topographic fcatures" (Woollard and Khan, 1972).

Actual values, however, may vary between asbout 2.2 and 2.9 gm/cm3

(Strange and Woollard, 1964).
Using 0 = 2.67 gm/cm3 and the generally
_8
- accepted value for the gravitational constant, k = 6.67 x 10

cm3/gm sec?, then (3.6-24) becomes

(AgF)P = (AgF)Q + $.1119 &h - TCp + TC (3.6-25)

Q
Although the general equations (3.6-24) and
(3.6-25) were derived specifically for the simple topographic
model of Figure 3-2, Appendix C shc /s thai these equetions, in
fact, have general application to &'l topographic settings.
The general relations (3.6-24) and (3.6-25)

hold for local topographic variations, i.e., for topographic

variations within a radius of about 10 kilometers. Within such a
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srall area, these equations show that the free wir anomaly varies N

largely as a linear function of elevation difference between points

where gravity is observed. Since local elevation, of course, does

not vary as a linear function of position, then it follows that

linear interpolation between free air anomaly values is an |
3 invalid procedure and, for this reason, free air anomaly maps are

very difficult to draw accurately in continental areas. Indeed,

the property of free air anomaly values *o be closely associcted !

with elevation variations within a local area makes the free air

anomaly an undesirable form for interpolation and extrapolntion

purposes within the continents particularly in mountainous areas. |

The general validity of (3.6-25) can be
illustrated by a numerical example for a physical setting which

closely approximates Figure 3-2. GSuppose the point, P, of Figur-

l 3-2 lies at the summit of Pikes Peuak and the point, @, lies on the
nearby plain at Colorado Snrings. Gravity and elevation data for
+ ) these two stations are given in Table 3-2. Then,
/
= + e 8
+ (bep)prins v = (28p)cono spg * 0-1119 on
= + 7
} ~CPIKES PK 1CCOLO SPG
= - + 0.1119 - 18k2) - +
(AgF)PIES pic 17 + 0.1119 (4293 - 18k2) - 57 + O

(AgF)PIKES pK = + 200 mgal

which checks closely with the free air anomaly value of + 203 ngal

(Table 3-2) which was computed from observed gravity at Pikes Peal.
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TABLE 3-2

DATA FOR GRAVITY OBSERVATIONS

AT PIKES PEAK AND COLORADO SPRINGS

_ Complete
STATION be, h TC be
LOCATION (mgal) (meters) (mgal) (mgal)

PIKES PEAK +203 4293 +57 -220

COLORADO SPRINGS - 17 18k2 0 -223

SOURCE: Woollard (1962)
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Now suppose that fhe point, Q, in Figure 3-2

is located at sea level. Then, h, = 0, ¢h = hP’ and equaticn

Q
(3.6-25) becomes

(AgF) = (AgF) +0.1119 h, - TC, + TCQ (3.6-26)

h=hP h=0
’ Equation (3.6-26) shows that, within a local
area, the free air anomaly at any point above sea level, (AgF)h=h_’
is given by a constant sea level free air anomaly value, (Agp)h=oz
plus about one milligal per nine meters of elevaticn. In a more

general form, (3.€6-26) may be written

AgF = { + wvh (3.6-27)

where

ﬁgF free air anomsly computed from observed gravity by
(3.6-14) for a point within a local area

h

elevation of that point
Y and w are constants which may be determined empirically by
a linear least squares data fit according to (3.6-27).
Note that only free air anomaly values are
involved in (3.6-26) and (3.6-27) even though these expressions

resemble the Bouguer--free air anomaly relation, cp. (3.7-15).

The sea level free air anomaly value, vy, thouch

nearly constant within a1 very local area, will vary from place to
place mainly as a function of local topographic characteristics,

although it is also sensitive to other locally and regionally

varying factors.

0 g o
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The value of w within any local area depends {
primarily upon the average magnitude of the terrain corrections, w
the density of the rock matter composing the topography, and the
degree of local compensation actually afforded to the local
topographic features. Using equation (3.6-25) some logical limits
can be place ;pon the magnitudg of w with reference to the normal !
limits of the rock density, o, and terrain corrections. With the
limits 2.2 and 2.9 for density, the value of 2 m k ¢ h will vary
between 0.092 h and 0.122 h, where h is in meters. Adding the

limits O and 0.05 mgal/meter for the terrain corrections, then the

limits on w in milligals per meter are

0.042 < w < 0.172 (3.6-28) i'
The limits (3.6-28) assume a total lack of }
local compensation. As the local features become increasingly
broader in extent, however, an increasing amount §f compensation is
afforded. Since, for complete conpensation, w = 0, a more inclusive

limits statement is

0 <w<0.172 (3.6-29)
Extensive empirical tests in the United CGtates
and Europe suggests that a good overall average value for point

data is (Voss, 1972b)

w = 0.060 (3.6-30)

vhich, interestingly, lies about midway in the range given

by (3.6-29).
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It is also interesting to note that using 0

the "normal" values of 2.67 for o and 0.0316 mgal/meter for TCph»

assuming TC. to be zero, yields the value w = 0.080.

Q
The existence of the local free air anomaly

relationship (3.6-27) suggests that a 1° x 1° mean free air anomaly

can be predicted by

dg, = ¥ + uh (3.6-31)
vhere
&g, = predicted 1° x 1° mean free air anomaly
h = mean elevation of the 1° x 1° area for which the mean

free air anomaly is to be predicted

The constants, ¢ and w, are determined by a
least squares fit of equation (3.6-27) at many well distributed
measurement sites within the 1° x 1° area. In regions of locally
homogeneous structure and topography, the constants ¢ and w will
vary uniformly from one 1° x 1° arvea to the next, and linear
interpolation is possible. However, very rapid variations in
¥ and w are encountered acrcss breaks in local structure or where
local topographic characteristics change. Consequently, considerable
care must be exercised when using (3.6-31) for 1° x 1 mean anomaly

prediction.

3.6.3.3 Regional Variations in the Free Air Anomaly

The free air anomaly varie: as a linear
function of elevation within a local area because local topographic
variations of up to about 10 kilometers in width can be treated as

wholly or nearly uncompensated features. Regional topographic
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variations greater than about 3° x 3° in extent. on the other hand,

may be treated as nearly compenseted features. Consequently, -

free air anomalies will not necessarily be positive over an |
extensive area with high average height, but rather, should have )
an average value of near zero in such regions.

The behavior of free air anomalies with 3
respect to topographic features varying in lateral extent between
about 10 km x 10 km and about 3° x 3° is transitional. Relatively
positive free air anomalies are generally associated with relatively
L high topographic features whose.lateral extent lies within the

transitional range. As the tcopographic high becomes narrower,

v

the positive free air anomaly associated with it becomes more
intense. The limiting cases are no correlation (except at the

edges) as the feature becomes increasingly broad orn the one hand,

and the relation (3.6-25) as the feature becomes narrower on

the other hand.

Weollard (1969a) has determined the regional
} ! relations which exist between free air ancmalies and elevations
} within the United States. These relations, given in terms of

1° x 1° mean values are:

EF= - 0.103 H + 18 0 < H < 200 (3.6-32)
gy = 0.009 H - 3 200 < H < 1800 (3.6-33)
ZEF =  0.0L7T H - Tbk H > 1800 (3.6-34)
where
BAg. = 1° x 1° mean free air anomaly in milligals

o

1° x 1° mean elevation in meters
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The first relation (3.6-32) applies to coastal l
and interior lowlands where surface relief is slight. The relation !
is actually very poorly defined which suggests that, in fact, i
there is virtually no regional correlation between free air anomaly
and elevation in the flat lowlands (Strange and Woollard, 196ka).

The second relation (3.6-33) applies to
moderately elevated areas in the interior where relief is typically /
low to moderate. Insertion of the limiting elevation values into
(3.6-33) shows that, on the average, the 1° x 1° mean free air
anomaly increases only by about 10 mgal over the mean elevation
range of 200 to 1800 meters. This is a very mild correlation.

The third relation (3.6-3L4) shows that the
1° x 1° mean free air anomaly values tend to increase somewhat
more rapidly with elevation in the highly mountainous areas of the
United States whose 1° x 1° mean elevations exceed 1800 meters.
This is due to the smaller width of topographic features in the
mountains es compared to those at lower elevations. However, note
that the slope constant of (3.6-3L4) is still only atout half that
normally expected for the local free air anomaly elevation
correlation, relation (3.6-30).

Relations of the type (3.6-33) and (3.6-3L)
have been suggested for prediction 1° x 1° mean anomalies in
unsurveyed areas (see Woollard and Strange, 1966). However,
experience has shown that prediction with the Bouguer anomaly

generally gives superior results, i.e., more definitive correiations

than that provided by, e.g., (3.6-33).
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Superimposed upon the regional elevation effects,
if any, are the effects of regional geology, crustal structure, and
regional isostatic imbalances. Woollard (1962) states the factors,
other than elevation, which can affect the regional part of the
free air anomaly:

(1) Regional departures from isostatic
balance due to (a) variations in crust or upper mantle strength,

(b) external stresses such as compression at the edges of crustal
plates, or (c) a time lag in establishing equilibrium conditions
for changes in surface mass caused by erosion, deposition,
glaciation, or deglaciation.

(2) Lateral gradational density changes
within the crust and/or upper mantle due to compositional variations,
and

(3) Regional variations in depth to
basement or other intra-crustal boundaries across which a density
contrast exists.

These non-elevation dependent factors affect
all of the commcx gravity anomaly types in a similar manner and to

a similar degree.

3.7 Beuguer Anomaly

3.7.1 Elements of the Bouguer Anomaly

Analagously to the free air anomaly, two steps are
necessary to obtain a theoretically correct Bouguer gravity anomaly

value, Figure 3-3. Firstly, all masses above sea level are removed

completely leaving a gravity observation at peint P situated in frece

-,
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air at an elevation h above sea level. Secondly, the gravity
observation is lowered through free air to sea level. In a
mathematical sense, the topographic masses are moved to infinity.

The gravitational effects of each step are determined

computationally and combined to obtain the Bouguer reduction,
(CgO)B
( ' = - + A
(6gy)p 8 * &g (3.7-1)
vhere g, and g, are as de.’1ed for equation (3.6-2).
The term, gF, is the free air correction given by

equation (3.6-13). The term, & includes the following mandatory

and/or optional elements:

JAandatory element
Bouguer correction, 3
Optional elements
Terrain correction, TC
Curvature correction, CC
Geologic correction, GC
Different terminology applies depending upon which, if
any, of the optional elements are vsed. With the omission of all

optional elements, the relation

& = By (3.7-2)
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FIGURE 3-3

ILLUSTRATION OF COMPUTATIONAL STEPS NECESSARY

TO OBTAIN THEORETICALLY CORRECT

BOUGUER ANOMALY
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TOPOGRAPHIC MASSES SHADED

Point, P, on physical surface
Point, Q, vertically below P on geoid surface
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STEP 1. Remove topographic masses completely.
Point, P, now situated in free air at elevation, h, above geoid.
-
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when inserted into equation (3.7-1) defines the simple Bouguer

reduction¥ i

(8gy)p = - 8, * & (3.7-3) r

such that, by (3.3-1), the simple Bouguer anomaly is given by

bgp =8y - B * B, = Y (3.7-k4)

The relation |

ey =By = TC (3.7-5)

defines the complete Bouguer reduction

(8g.). = - gy + TC *+ g (3.7-6)

0'L

such that the complete Bouguer anomaly is given by

The curvature correccion is an optional addition to
(3.7-7) and the geologically corrected forms which follow.

Geologically corrected Bouguer anomalies may or may not g
cont.ain the terrain correction and, hence, are of two forms. The

geologically corrected simple Bouguer anomaly is

Bgy = 8, - 8y * GC + g - ¥ (3.7-8)

¥Regrettably, there is no consistency in Bouguer anomaly terminology in
the literature. The form identified here as the simple Bouguer reducticn
is sometimes termed the complete Bouguer reduction; also the furm

identified later as tle complete Bouguer reduction is soumetimes call=d

the refined Bouguer reduction. Other variants are also found.
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and the geologically corrected complete Bouguer anomaly is

bg, =8, - gy * TC + GC + gp = v (3.7-9)

Comparison of (3.6-5) and (3.7-4) shows that the relation

between the simple free air anomaly and simple Bouguer anomaly is

bg, = bg, + gy (3.7-10)
Similarly, comparison of (3.6-5) and (3.7-7) shows
that the relation between the simple free air anomaly and complete
Bouguer anomaly is
beg, = hg  + &y - Ic (2.7-11)
Relations (3.7-0) and (2.7-11) apply to both pcint

and mesn gravity anomaly values.

3.7.2 Bouguer Correction, £q

Assume that the physical surface of the eartn which

passes through the point where gravity is observed is flat (planar)

and horizontal and that the surface of the geoid 1s parallel to it.

These two assumed surfaces, when extended jnfinitely far in ~1l

horizontal directions, enclose and define the Bousuer plate {(Vicur.

Mathematically, the Bouguer plate iz a right circulur
cvlinder of height, h, and infinite radius where h correspond. Lo
the elevation of the gravity observation site above c. level.

The observation site is assumed to be situated at the intercectiown

of the axis and upp=2r surface of the cylinder.
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FIGURE 3-L

THE BOUGUER PLATE

(Bouguer plate i, snaded)
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A complete derivation of the gravitational attraction

¢f the infinite Bouguer nlate is given in Appendix A with the

result appearing there us cjustion (A-16). It is written here
as
gg=2mnkoaon (3 T2
where
K = gravitational constant
0 = volume density of the rock matter within the Bouguer plste

oy
"

elevation of the gravity observation above sea level.

The most commonly used value for the density factor in
the Bouguer correction is 2.67 gm/cm3. This value, when used for
gravity reduction purposes, represents the average density of the
sedimentary and crystalline rocks lying between the ground surface
and sea level; a value ¢ about 2.9 gm/ecm? is needed to represent
the mean density of the crust as & whole (see Woollard and Khan,
1972). With the value of 2.67 gm/cm3 for density and the commonly
accepted value for the gravitational constant, equation (3.ir=1%)

is cb*ained in its usual form

gg = 0.1119 h (3.7-12)
where h is in meters. Using (2.7-13), the eguations (3.7-10)

and (3.7-11) now read
hp = beg +0.1119 h (3.7-1%)

bg. = g5 + 0.1119 h - ©C (3.7-15)

which are the forms in which these relations are usually statel.

Py
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Note thét three basic approximations are made when the
Bouguer correction (3.7-13) is used to compute the gravitational t
effect of the masses above sea level. Namely, these topographic
masses are assumed to be (1) perfectly flat, (2) of infinite
horizontal extent, and (3) composed of rock whose density is
2.67 gn/em3 throughout.

The first approximation does not cause appreciable
error in computation of the topographic gravitational effect for
areas which are, in fact, essentially flat and planar, e.g..
coastal and interior lowlands, platforms, etc., Figure 3-5B.

In mountainous terrain, however, where the topographic profile
is not well approximated by the Bouguer plate, Figure 3-5A,

the terrain c-.rection must be applied in order to obtain a
theoretically correct Bouguer anomaly value, i.e., a value from
which the gravitational effects of the topographic masses have
teen eliminated completely.

The second approximation, while having significant
consequences for the geophysical interpretation of the meaning of
the Bouguer anomaly, causes only negligible error in the computation
of the topographic gravitational effect. Jf desired, the error
can be eliminated by application of the small curvature correction.

The third approximation is actually a strength of
the Bouguer encmaly since it provides a foundation for analysis
of the effects of local geologic structure on gravity anomaly

variations. The analysis is done with re“e~2nce to the geologic

~orrection.
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FIGURE 3-SA |

TERRAIN CORRECTION NEEDED

FIGURE 3~-5B

TERRAIN CORRECTION NCT NEEDED
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TERRAIN CORRECTION NEEDED
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SETS Terrain Correction i

The terrain cerrection should be used in Bouguer
ancomaly computalions whenever the topographic relief in the 1=
vicinity of the gravity observation point differs markedly from
the flat planar model implied by the Bouguer plate.

There are two situations to be considered as shown )
in Figure 3-S5A. Area A, included within the Bouguer plate, is
above the physical surface of the earth and, therefore, contains
no rock mass. Un the other hand, the mass contained within area B
lies entirely above the upper surface of the Bouguer plate. Thus,

when the attraction of the Bouguer plate is subtracted from

observed gravity as un approximation of the attraction of the
actual topography, too much mass is subtracted at A, too little
mass is subtracted at B, and the resulting anomaly form will noi
be free of topographic effects.

The terrain correction, when applied, (1) restcres the
attraction of the mass mistakenly removed at s~ when the attraction
of the Bouguer plate is subtracted, the restoration of mass beneath
the point F causing gravity observed at I' to increase, and (2)
eliminates the attraction of the mass remaining at B after the
Bouguer plate has been removed. C{ince the mass at B exerts an
upward or diminishing effect on gravity observed at ', its removal

will cause cbserved gravity at P to increase. The terrain

correction, thus, is always positive in the context of equations
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(3.7-6) and (3.7-7) for contirental areas, i.e., when the terrain
correction is interpreted as = correction to observed gravity in *{
the Bouguer reduction.

For practical computation of the terrain correction,
the physical surface of the earth in the vicinity of the gravity
observation point is approximated by a series of horizontal plane j
segments which, together with the upper surface of the Bouguer
piate, define the upper and lower surface of a series of cylindrical ]
compartments radiating outward from the observation point. i

Cylindrical formulas such as {A-16) of Appendix A, modified for

} application to cylindrical compartments, are used to compute the
attrastion of the mass within each compartment where the elevation
argument in the formulas is the difference between the elevaticn

of the horizontal plane segment and the elevation of the upper

surface of thne Bouguer plate. The gravitational effects of all
compartrents are summed to obtain the final terrain correction
value. .;
} g The gravitational attraction of the topographic masses

attenuates rapidly as the horizontal distance from the gravity R
observation point increases. Consequently, the terrain ccrrection
computation need be carried only a maximum distance of 166 km from
the gravity observation point. Masses beyond 166 km in horizontal

distance, being on the horizon* exert practically no gravitational

*The attraction of mass on the horizon is predominately horizontal

(rather thar vertical, i.e., gravitational).
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attraction of the computation point. In many cases, it is !

unrecessary to carry the computation beyond a 20 km radiuv= from N

the station. Woollard (1962) shows that in general, 95% of the i
terrain correction value is generated by the masses contained

within an inner 20 km radius of the observation. Thus, if the

contribution to the terrain correction from the inner 20 km is i
found to be 20 mgal or less, omission of the area between 20

and 166 km will cause an error of less than 1 mgal.

3.7.4 Curvature Correction

Because of the earth's curvature, the outer portion

of the Bouguer plate departs from the earth's surface. In fact,
at a distance of 166 kilometers from the gravity observation
point, the lower surface of the Bouguer plate is more than a
kiiometer above sea level.

Since topographic mass is actually situated soumewhat
below the outer regions of the Bouguer plate, the vertical
attraction of that mass is somewhat greater than that predicted
by the Bouguer plate. The curvature corraction accounts for this
small difference.

In addition to eliminating the effects of curvature,
the curvature correction also removes the attraction of that
part of the Bouguer plate beyond 166 kilometers from the
observation point.

The maximum curvature correction value, less than 2 mgal,

occurs when the gravity observaticn station lies at an altitude of zabout

2300 meters. The courrection is smaller for lesser or greater elevations.
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3.7.5 Geologic Correction

The geologic correction generally is used to obtain
some insight into local lateral density variations in the upper
part of the crust--especially those within the sedimentary column.

Consider first the case of lateral density variations
within the topographic masses. Figure 3-6 shows a sedimentary
sequence where the average rock density varies from 2.8 gm/cm3
within region A through 2.67 gm/em3 witnin region B to 2.6 am/cm3
within region C. For simplicity, the wupper topographic surface
is assumed to be flat and planar.

Now examine the result of computing Bouguer gravity
anomaly values over areas A, B, and C using the usual density
factor of 2.67 gm/cm? in the Bouguer correction. Within area B,
the correct amount of topographic mass is subtracted in the Bouguer
plate and the Bouguer anomaly profile will be level--assuming,
of course, that there are no lateral densit; variations below
the geoid. Within area A, an insufficient amount of mass is
subtracted in the Bouguer plate since the actual density of the
rocx matter within A exceeds the density of the Bouguer plate.

The attraction of the unsubtracted mass remaining within area A

after the Bouguer correction is made must cause a positive deflection

or "anomaly" in the Bouguer anomaly profile over area A.
Looking again at this relation from a slightly
different viewpoint, the greater mass per unit area within A as

compared to area B means that observed gravity over A must exceed

that over B.
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FIGURE 3-6

THE GEOLOGIC CORRECTION:

LATERAL DENSITY VARIATIONS

ABOVE SEA LEVEL
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T2
(6g)y > (8
Since there are no lateral density variations in the
normal earth, then*
W Ve

And, since the elevation of area A is the same as

that of area B

)

(g5), = (85)y

(gF)A = )y

Iy

According to the above and equation (3.7-4), therefore,

it must be true that

(AgB) (AgB)

A7 B
The magnitude of the "anomalv," GAgB, over A and C

is given by

Sbg_ = 2k (0o - 0_)h (3.7-16)
B B
where
0 = actual density of the rock within A or C
OB = density of rock in the Bouguer plate

Equation (3.7-16) should be recognized az a form
appropriate to computing the attraction of a cylindrical disk of

infinite radius, height, h, and density, o - oP.

¥Assuming, of course, that the latitude of A is not greatly

different from that of B.

b
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Equation {3.7~16) shows that the magnitude of the
"anomaly" over A and C is a function of not only the density
difference, 0 - OB’ but also of the elevation, h. That is, the
magnitude of the "anomaly" over A or C is correlated with
elevation. The correlation is direct vhen o - o_ is positive,

B

inverse when o -~ OB is negetive. Suppose the physical surface
of Figure 3-6 is a normal topogrzphic profile instead of a flat
plane. Then, if o ~ 5 # 0, the local Bouguer anomaly profile
will be a direct or inverse reflection of that local topographic
profile. This fact is of importance to the GRADE prediction
method.

With the limits 2.2 and 2.9 gm/cm3 for actue. rock

density, then the factor, o - OB’ nas the limits

- 0.47 < (0 - 0,) <+ 0.23
Insertion of these limits into (3.7-16) gives, as
approximate limiting values
- 0.020 h < 80gy <+ 0.010 h (3.7-17)

The magnitude of the dependence of local Bouguer
anomaly variztions upon local elevation variatious (3.7-17) is

thus much smaller then the magnitude of the dependence of local

free air anomaly variations upon local elevation variations (3.6-30).

Further, if ¢ - o_ = 0, the Bouguer anomaly ¢ independent of

B

local elevation variations. This fact is demonstrated further

in Section 3.7.6.
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The cohdition, g -0

B = 0, can be simulated by use of }

the geologic correction which is given by (3.7-16) with reversed

sign.

GC = 21k (0. - d)h (3.7-18) :

B

For area A the geologic correction, with h in meters, is

GCA

onk (2.67 - 2.8)n o

0.04191 (- 0.13)n

~ 00005h

And, for area C

G 2tk (2.67 - 2.6)h

c

0.04191 (+ 0.07’h

+ 0.003h

The negative correction, GCA’ added to observed gravity
over area A and the positive correction, GCC, added to observed
gravity over area C will cause the Bouguer anomaly profile to be
level over the entire sedimentary sequence (dashed line, Figure 3-6)
again assuming that there are no lateral density variations below
the geoid. In the case of the real earth, there are density
variations below the geoid which will cause the Bouguer anomaly
profile %o fluctuate. In this case, application of the proper
geologic corrections will still remove all correlations between the
local Bouguer anomaly profile and thie local topographic profile.

Consider next the case of lateral density variations
Just below sea level. Since no mass below sea level is subtracted

in the Bouguer reduction, the density value used in the Bouguer

correction is not a factor here. What is important is the density
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structure implied 5y normal gravity, namely an average density
basement rock with no lateral denctity variations. On the other
hand, normal gravity is not a factor in analyzing the topographic
column because the normal earth lacks topographic mass.

Figure 3-7 shows a sedimentary sequence e¢xtending from
sea level downward a depth, 4, to the top of the basement complex.
The average rock density within this sedimentary sequence varies
from 2.79 gm/cm3 within region D through 2.74 gm/ecm3 within region
E to 2.63 gm/cm3 within region F. These values reflect the
study of Woollard (1962) which shows that the value of 2.Th gm/cm3
is close to the average density for all basement rocks encountered
in North America.

Now examine the result of deducting normal gravity when
the Bouguer anomaly is computed over each of these regions.

Within areas E, the correct amount of mass is deducted; within D
too little mass is subtracted causing a positive "anomaly"; ana
within F too much mass is deducted causing a negative '"anomaly."

The magnitude of the "anomaly" over D and F is giveu by

Sbog. = 21k (0 - o,)d (3.7-19)
B A
where
o = actual rock density within D or F
°A = gverage density of basement rock as implied by normal

gravity
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FIGURE 3-T

THE GEOLOGIC CORRECTION:

LATERAL DENSITY VARIATIONS

BELOW SEA LEVEL
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" esmm = .- o e

Equation (3.7-19) shows that the "anomaly" is a functio..

of Lot tre density difference, 0 - T\ and the devth to tassment,
i. The correlation between anomaly and depth to basement is direct
when ¢ - . is positive, and inverse when o - 7 is negative.
¥imre -7 shows that the local Bouguer ancmaly profile is a direct
cr invers: raflection of the buried basement topography. This
Tact, araln, is of importance in tre GRADE prediction methcd.

"Le factor, o - OA’ also may be interpreted as tle
density contrast between rocks within “he sedimentary sequence
and ths underlying basement rock. In fact, this interpretaticn
is desirarle when more complex geolozic structures are being
gravimetrically analyzed.

The geologic correction for the below sea level case

is given -y
GC = 2nk (o, - )4 (3.7-29)

For area D, the geologi: correction, with 4 in

GG onk (2.7 - 2.79)d

D

0.04191 (- 0.05)d

- 0.0024

4And for area F

GC 2rk (2.74 - 2.63)4

F

0.04191 (+ 0.11)d

+ 0.00%3
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Applicaticn of these corrections to observed gravity :

will eliminate the correlation between depth to basement and
souguer anomaly in the case of an undulating basement surface. !

Two different methods have been used for determining
the geologic correction. One was developed by Woollard (1937, 1938)
and the other by Nettleton (1939).

In Woollard's method, subsurface geologic information
is used to determine the actual mean density for each compartment
of the Hayford and Bowie (1912) terrain correction zones. The
density is determined down to sea level or the top of the
crystalline basement complex. Examples are given by Woollard
(1937, 1938) in his study of the Big Horn lountain-Black Hills area.

In the density profiling method of Nettleton (1539)
trial density vslues are used along a profile across topographic
features to detsrmine which density value gives no correlation
between terrain corrected gravity aazomelies and topographic
elevations.

Woollard's method is preferred in areas where the
topography is of tectonic or igneous intrusion origin. Nettleton's
nethod is applicable in areas where the topography is of erosional
origin except when there is a considerable amount of relief in
the basement surface underlving the sedimentary strata. Woollard's
method is better in the latter case.

“lore compler geological correction computations are
cften attempted. For example, a hypothetical model of rock

structure can be set up, stratified if desired, and exact

attraction formulas appropriate to the shape of tne structure can
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be used to compute the attraction effects of the density con.rasts.
The computed anomaly profiles can be compared to observed Bouguer
anomaly profiles, and then the structure and density of the model
can be adjusted within logical bounds until a best fit is obtained
between the two profiles. The result is a most probecble model

of subsurface rock structure. The remaining unexplained differences
between the Bouguer anomaly profile and the corputed profile can

be ascribed to lateral density variations deeper within the crust
and upper mantle.

With a knowledge of local Bouguer gravity anomaly
variations, then, the local subsurface geologic structures which
generate these variations can be deduced. Other information,

e.g., seismic, geological survey, well logs, 2tc., is always
necessary as input to enable construction of a first approximation
and to put logical limits on solutions because the problem has

no ur.que solution. In fact, there are an infinite number of
subsurface geologic structure arrangements which can generate

any given Bouguer anomaly profile.

On the other hand, if the subsurface geologic structure
is known with reasonable accuracy, the gravity variations generated
by said structures can be predicted. This problem does have a
unique soiution and is the basis for the local geologic correcti.n

term used in the NOGAP prediction scheme.
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3.7.6 Geophysical Properties cf the Bouguer Anomaly

The Bouguer gravity anomaly is a useful, easy to
compute tool for geophysical and geological interpretation as well
as for gravity interpolation and prediction. Yet, at the same time,
it is wholly unsuitable for most geodetic applicatiois. This
seemingly schizophrenic nature of the Bovguer anomaly is due to
its peculiar geophysical properties.

Consider, for example, the equation obtained by
inserting the Bouguer reduction, equation (3.7-1), into the basic

gravity anomaly relation (3.3-1). The resuit may be written

bey = (gc + sz) - (v . g) (3.7-21)

il
As was pointed out at the outset of Section 3.6.3 on
the free air anomaly, the total mass of the esarth generates the
term, (go + gF), the total muss of the normal earth generates the
value, v, and these two masses are defined to be equal. Therefore,
the term, (y + gT) implies the existence of more mass than the
total mass of the earth. In consideration of the foregoing and
equation (3.7-21), it is not at all surprising that the Bouguer
anomaly is generally negative approximately in proportion to
the amount of mass subtracted in the Bouguer reduction®*; nor is it
surprising that an anomaly form which is not conservative of earth

mass should be of little value in applying the integral formulas of

physical geodesy. un the other nand, subtraction of the Bouguer

*A more convenient geophysical interpretation of this phenomenon

will ve discussed in Section 3.7.6.1.

P




reduction is a necessary prerequisite to application of the
geologic correction--whose value to structural interpretation has
veen discussed in Section 3.7.5.

Hext, consider a highly instructive interpretation of .
the Bouglier gravity anomaly suggested by Bomford (Bomford, 1971).
Recall that, in the Bouguer reductio.., the topography is approximated
by a zircular cylinder of infinite radius which is tangent to
the geoid 2t the gravity anomaly ccriputation point and whose
thickness is equal to the elevation of the point where gravity
is observed. UNote that the curvature of the earth is totally
neglected in the Bouguer model.

In the immediate vicinity of the gravity observation
station, say within a radius of 50 km--about 1° x 1°--the terrain
corrected Bouguer plate gives an excellent approximation of the
actual topography such that the gravitational attraction of the
nearby topos.;aphic masses can be accurately removed by thke Bouguer
reduction if the correct density factor 1s used.

The inner zone grades outward into an .ntermediate belt
in which the gravitational effect of the tupography becomes small
both for the real earth and for the Bouguer plate model because
all masses in both cases are near the horizon.

Cutside of the intermediate belt the gravitational
effect of the topography again becones significant because the
curvatur: of the earth causes the topography to be significantly

below th2 horizon of the gravity computation point. On the real

earth, the gravitaticnal effect of distant topography is nearly




-

83 a

cancelled by isostatic compensetion. In the Bouguer model, 1
neglect of curvature means that all distant topography is on ‘i

the horizon and, hence, exerts no vertical attraction component

at the point where gravity is observed. In other words, in the
Bouguer model, the effect of the distant topography is rancelied
by neglect of curvature.

It is evident, therefore, that the regional character
of the Bouguer anomaly differs markedly from the local cuaracter.
Locally, the Bouguer anomaly is a sensitive indicator of lateral
density variations within nearby masses. Regionally, the Bouguer
ancmaly it an indicator of the degree of regional isostatic balance.
tiowever, since masses locatecd at intermed’ ate distances have little
effect on the Bouguer anomaly, there is no sharp boundary between
tke local and regional effects.

The 3ouguer gravity anomaly thus is well suited to
analysis and predlction in t rms of regional and local components.

3.7.6.1 Isostasy and the Bouguer Ancmaly "

Consider again the geophysical consequences
of computing a geologically corrected complete Bouguer gravity
ancmaly. The Bouguer and terrain corrections subtract the
sravitational effects of the masses above sea level. Then, if
the density fuctors are chosen properly, all local gravitational
effects of density variations within the topcgraphic masses and
sub geoid rocks can be eliminated by the geologic correction.
Addition of the free air correction and subtraction of normal
£ravity now give a Bouguer gravity anomaly referenced to the

re0id which iz free of near surface geolegic effects.
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Yet, it is an observed fact that no matter
what "reasonable" density factors are used to compute Bouguer anomalies,
these anomalies almost always resemble a smoothed mirror image of
the topography--the higher the regional elevation, the more
negative the Bouguer anomaly. Note especially theat the inverse
relation between elevation and Bouguer anomaly is & smooth regional
effect. Complete Bouguer anomalies do not reflect local topographic
variations when the proper density factor 1s chosen for use in the
Bouguer reduction.

The strong inverse correlation between
regional elevation and Bouguer anomaly, evidently, cannot be related
to near surface density variations--the effects of these were
eliminated when the geologic correcticn was applied. The only
possible explanation is that the negative Bouguer anomaliles are
caused by a regional mass deficiency which exists under the
continents in proportion to the regional elevation of the overlying
land mass. This mass deficit is called "compensation."

Regional Bouguer anomalies can serve as a
kind of indicator of the degree of compensation extant in an area.
If the regional Bouguer anomaly is more negative than expected
for a given .egional elevation level, then a condition of
overcompensation*® is indicated. Conversely, if the regional Bouguer
anomaly is more positive than expected for a .egional elevation

level, then a condition of undercompensation is indicated. The

*That is, the gravitational effect of the mass deficit et depth

exceeds the gravitational attraction of “hz topusraphic mass.
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rictur? can be complicated by the precence of regional abnormalitie:
in crustal and upper mantle structure or density. For examnle, an
abnormally dense crustal block can be in complete isostatic
equilibirium, yet still eenerate a relatively positive eravity
anomaly indication which sugrests a condition of uudercompensation
{(30lizdra. 19723 VWoollard, 1969a).

fiow, if the strong inverse correlation
between recional elevation and reisional touguer gravity anomaly
!5 renerated by comrensating mass, then the lack of such a strong
correlation must signal a luack of compensating mass. And, since
it is observed that local topographic variations are not correlated
with the geolocically corr:~ted Bouguer anomaly, it follows that
local topographic variations are uncompensated. 'This same

conclusion wus deduced with respect to lncal free air anomaly--

elevatior correlations.

2.7.6.2 Local Variations in the Bouguer Anomaly

Local variations in the complete Bouguer graviiy
anoraly field are very nearly free of correlation with liocal
tovographic variations. Only a relatively small anount of elevation
devend:nce exists tecause of local geoloric influences.

liote, however, that zsimple Bouguer anomnlies
contain a neorative bias due to omission of the terrain correction
and, to this degree, do dep~nd upon local toporraphy.

Consider Figure 3-2. If the hill is of local

axtent, it may be treated as an uncompensated festure and equati~:

.€-2L) apvlies for the case of no lateral density cr reological
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structure variations. For the case where lateral density and
structural variations do exist, equations such as (3.7-1€) and

(3.7-19) must be considered in addition to ejuation (3.6-24).

(AgF)P = (AgF)Q +2m1kobh-1C, + TcQ

Conversion of the above to an expression
involving the complete Bouguer anomaly is accomplished by

substitution of (3.7-11) and (3.7-12) which gives

€

- .
(AgB)P 271k o hP e,

= (8 + = Mg +.2 ¢h - TC; + T
l \\gB)Q 2nko hQ Q 21k o éh - TCy CQ

s ans

Since dh = h_ - h., the above immediately

P Q’

reduces to the form

the pronounced non-linear variations in the free air gravity

(tgg)p = (AgB)Q (3.7-22)
The general validity of the remarkable result
. expressed by equation (3.7-22) is illustrated by the numerical
example of Table 3-2.
} ,’ Thus, the derivation of (3.7-22) shows that
|
|
|

- anoralins due to local topographic variations can be eliminated
entirely by application of the complete Bouguer recduction.

It is evident from the foregoing that any

local variations in the complete Bonguer gravity anomaly field

must be caused solely by latersl mass variations due to changes in

density and/or local structural pattern. Since (1) observed gravity
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is the integrated effect of mass attraction over a wide area,

(2) lateral mass variations are mostly gradational, and (3) really
sharp anomalies in mass distribution are of limited occurrence in
sub-geoid local continental geologic structure, ic follows that the
continental B-uguer gravity anomely field, in gereral, is continuous
and smoothly varying. Thus, Bouguer anomaly values are well suited
for linear interpolation and for this reason most gravity anomaly
maps of ccntinental areas depict Bouguer anomelies. Another

reason for the latter is the simplicity of Bouguer anomaly

computatiow :- compared to, e.g., isostatic anomaly computation.

3.7.6.3 Regional Variations in the Bouguer Anomaly

The gravitational effect of *he compensating
mass distributions generates the ohserved inverse relationship
between regional elevation levels and Bougu:r anomaly values. A
useful mathematical expression will now be derived for this
relationship.

If the topographic feature of Figure 3-2
is of regional extent, then this feature may be treated as being

wholly compensated and equation (3.6-15) applies.

(gp)p = (AgF)Q

This equation assumes a lack of lateral

density variations between points P and Q other than those associated

with the topography and its isostatic compensation.

e Y
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Conversion of the above expression to a form
involving complete Bouguer anomalies is accomplished by substitution
of equations (3.7-11) and (3.7-12), giving
(AgB)P +27kohp - TC,
. = (A +27koh, -TC
' ( gB)Q Q Q
# Or, solving for (AgB)P
(8gg), = (AgB)Q -2nko (b - hQ) + (TCp, - TCQ)
‘ Under most conditions, the regional terrain
{ correction terms, ECP and TCQ, are nearly equal in magnitude and
the term (TC, - TCQ) will tend to zero. Then, letting 8h = hP - hQ’
the above reduces to
= = L o
(AgB)P (AgB)Q 271k o fh (3.7-23)
$ ‘ Considerable care must be exercised in
-~
interpreting equation (3.7-23) because, although the difference
L ) tetween (AgB)P and (AgB)Q is actually a function of the differing
G

amounts of compensating mass deficiency under P and Q, only the

topography related quantities o and 6h actually appear in the

equation itself. Recall the three stated conditions for (3.7-23)

to hold, namely, (1) the anomaly and elevation values are regional
values, (2) isostalic compensation is complete under P and Q, and

(3) there are no lateral mass abnormalities. Under these conditions,
equation (3.7-23) merely expresses the evident fact that the gravity
effect of the difference in compensation between P and Q is equal (but

opposite in sign) to the gravity effect of the difference in
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topographic mass between I and Q.
For complete compensation to exist, the
regional values AgB and 6h must revresent surface areas of 3° x 3°
or larger in dimension (Woollard, 1969a). The "normal" value of
(3.7-23) in such cases is found by inserting the density factor used

to compute the Bouguer anomalies (AgB) and (AgB)Q' For the usual

B

factor, ¢ = 2.67 gm/cm3, equation (3.7-23) becomes

(AgE)P = (AgB)Q - 0.1119 $h

If the regional values, (AgB)D, (AgB) and

g
8h, represent areas smaller than 3° x 3°, iscstatic compensation
cannot be assumed to be complete. Also, lateral mass abnormalities
may exist. Then (3.7-23 cannot be evaluated in its present form
because the gravity effects of the topograpuy and compensation, in
reneral, will not be equivalent. Thus, it appears that ar

equation involving quantities related to the amount of compensation
present must replace (3.7-22). Unfortunately, such an equation can
be derived only with reference to an assumed isostatic model.

In order to avoid the use of an assumea
isostatic model, consider converting (3.7-23) to a more general
form which eliminates specific reference to the topographic
quantity, 7, which may have no simple relaticnship tc the amount of
compensation present in an area.

Let Q be located at sea level. Then }1Q =0,

3h = hP’ and (3.7-23) becomes

(AgB) = (AgB) ~2m1koh (3.7-24)

h=0

h=h_
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Then, arbitrarily rewrite (3.7-2L4) in the more
general form
Bgy = o+ Bh (3.7-25)
where

KE£ > (AgB)h=h = regional Bouguer anomaly
P

for any continental area, P, whose regional elevation sbove sea level

a > (Agﬁ)h=0 = a sea level regional Bouguer anomaly value
representing the region PQ
B = & coafficient representing the regional Bouguer
anonaly gradient with respect to elevation
within the region PQ
The topographic quan ity, ﬁ; still appears in
equation (3.7-25). However, it is very reasonable to suppose that
the regional compensation cen be expressed as a linear function
of regional elevation level.
If (1) the Gegree of isostatic compensation and
(2) any regionally anomalous lateral mass distribution :tructure
of the crust remain essentially constant over a particular regional
z20logic or tectonic entity, then it follows that the values, o and
B, must also remain essentially constant over t1:t regional structural
entity. Then values for a and B can be determin2d empirically by a
linear regression of Zgé and h over the region covered by that str.ctural
entity.
It is a unique property of the Bouguer anomaly

that, within most areas of homogeneous structural characteristics, (

the value of the constant, BR’ determined with reference to regional
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Z;é and F values is very similar to the value of the constant, BP’
determined with reference to point AgB and h values. (iiote that
this similarity is not a property of the corresponding free air
anomaly relationships.) However, the interpretation of (3.7-25)
is slightly different depending upon which type of data, point
or mean, is regressed to obtain the o and £ constants.

In one cace, (3.7-25) may be written

Ar_ =a_ + B_h (3.7-26)
where

AgB = a 1° x 1° mean Bouguer anomaly

it

the 1° x 1° mean elevation corresponding to Eéé
%y and BP are determined by a linear :c7rlssion of point elevation
and point Bouruer anomalies within the 1° x 1° area represented by
ZE? and h.

Since the correlation between Bouguer anomalies
and elevation defined by (3.7-25) is a rerional oné, then (3.7-26)
is a valid relation between the regional values Kég and h even
though the constants a and ﬁp are determined from point data.
In fact, (3.7-26) cezn be used to »radict valid 1° x 1° mean anomaliec

[o]

when h, aj, and BP are known for the 1° x 1° area in question.

The constants, o. and BP’ will vary somewhat

P
from one 1° x 1° area to the next. The variation will be small
when both 1° x 1° areas are similar in resional structure, larger

when the regional structure is dissimilar. These variations are

regional with respect to the point anomalies~--buc local with

respect to the 1° x 1° mean anomalies.
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In the cther case, (3.7-25) may be vritten

gy = ap + B h (3.7-27)
vhere

ZEE and h are the same as in (3.7-26)
ap and BR are determined by a linear regression of mean elevation
vs. 1% x 1° mean Bouguer anomalies within areas whose regional
structure is similar to and vhich are continuous with the 1° x 1°
area corresponding to Zgé and a.

The constants, o, and BR’ can be evaluated

R
for most areas of uniform regional structure within the continents.
Recently determined examples, written in the form of equation

(3.7-27), include:

AREA EQUATION
Alpine Geosyncline, Europe : ZEg = - 0.104 h + 21.4
Cordillera, W. Canada ZEB = - 0.078 h - T.1
Red Sea Z\EB = - 0.11h h - 7.0
Trans Urals ZEB = - 0.090 h - 2.4

In the above equations which, incidentally,
can be used to prelict the regional part of valid 1° x 1° mean
anomalies within each area, Zéé is the regional Bouguer anomaly
(milligals) represented by the 1° x 1° mean value and h is the
regional elevation (meters) represented in some cases by the
1° x 1° mean value, in other cases by the 3° x 3° mean value.

Other examples, similar to the above, are given by Woollard

(1969a, 1968b).
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trplication of (3.7-26) for 1€ x 1° mean
rravity anomaly prediction is essentially an interpolation
rrocess which ray be used when the 1° x 1° area for which the
prediction is Lo be made contains a fair to good density and
distribution of observed gravity dsta. The method fails when
elevation differences within the 1° x 1° aree are too small to
enable definition of the regional elevation-ancmaly r=lationship,
or when the gravitational effects of local structural variaticns
within the 1° x 1° mask the regional elevation-anomaly relationshiv.

In fact, the constants, a_ and BP’ of equation {(3.7-2€) will

I

always be less well defined than the constants, a_ and BF’ of

R
equation (3.7-27) because of the larger gravitational effects
of local structura. variations on point anomalies as compared %o
mean anonalies.

Application of (3.7-27) for 1° x 1° mean
anomaly predicticin is essentially an extrapolation process
which may be used when the 1° x 1° area for which the prediction
is to be made contains few or no gravity observations. However,
sufficient gravity data must be available in adjacent 1° x 1° areas

with similar structure to enable definition of the a_ and BR

R

values. Corrections for some kinds of local and regicnal
structural variations must be made when {3.7-2T) is used for
gravity anomaly prediction. OSuch corrections are unnecessary

- \

wnen (3.7-26) is applied for 1° x 1° mean anomaly prediction.
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In addition to the elevation dependent
regional variations discussed above, Bouguer anomalies are also
subject to regional variations in geologic and crustal structure.
Lxamples of factors causing such voriations were mentioned in
connection with the discussion on regionel variations in the

free air anomaly.

3.8 Isostatic Anomaly

L

.R.1 Elements of the Isostatic Anomaly

As was ‘'‘ie case with the free air and Bouguer anomalies,
w corputation of an isos’ :°* gravity anomaly ‘s essentially a two
step process. In the 'irst step, all masses above sea level

‘the topographic masses) are removed and then redistributed beneath

the geoid in such a manner as to eliminate the negative gravitational

affects of the compensating mass deficiencies. The mass
redistribution is carried out with reference to (1) an assumed
model of earth structure and (2) a specific concept of the nature
of ~he iscstatic mechanism.

At the completion of the first step, which removes
} toth the topography and its compensation, the gravity observation
site is situated in free air at an elevation, h, above sea level.
In the second step, gravity is lowered through free air to sea
ievel.

The gravitational effects of each of the two steps are

determined computationally and combined to obtain the isostatic

reduction, (égo)

I
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(8gg); = - &p * 81 * & (3.8-1)
where
g1 = isostatic correction
ST and Bp are the same as defined for equation (3.6-2) |
For the isostatic reduztion, the term gT includes the
. complete Bouguer correction given by equation (3.7-5) to which the
curvature correction, CC, has been added. The term, 8o is the
free air correction given by (3.6-13). Insertion of these relations f

into (3.8-1) gives for the isostatic reduction
& (650)I =-gpt TE) + IEC + gr * 8p (3.8-2)
such that, by (3.3-1), the isostatic anomaly, AgI, is

bg; = 8y - gg * TC + CC+ g + g, - (3.8-3)

Comparison of (3.7-7) to (3.8-3) shows that the relation

between the complete Bouguer anomaly and the isostatic anomaly is

bg; = bgp * B (3.8-4)

} ,; where the small curvature correction term has been dropped.

Zquition (3.8-U4) shows that the Bouguer anomaly is actually one

0 limiting case of the isostatic anomaly because, when the topographic

mass is moved to inrinity in the Bouguer reduction, then g; = 0
and AgI = AgB. Incidentally, the free air anomaly is another
limiting case of the iscstatic aaomaly. In this case, the
topographic mass, moved just underneath the geoid, is essentially

still topographic mass in its gravitational effects. Then, ]

3 = =) + =3

i

p , L
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Insertion of (3.7-11) and (3.7-12) into (3.8-L) gives

the relation between the free air anomaly and the isostatic anomaly
= - + O
bgy = bgp -2 mkoh+TC+ g (3.8-5)

3.8.2 TIsostatic Correction

The isostatic correction includes (1) the gravitational
attraction at the observation site, P, of the volume mass placed
beneath the geoid ia accordance with a particular earth model and
isostatic theory, said mass being equivalent to the topograpiiic
masses removed by the Bouguer reduction; plus (2) the gravitational
attraction at P of distant topography and its compensation.

The basic purpose of any isostatic correction is to
redistribute all topographic mass removed by the Bouguer
reduction in order to {1) cancel the nega.ive gravitational
effects of the mass deficiencies which compensate the topography,
and (2) eliminate any correlation between the resulting isostatic
anomalies and elevation variations. Actually, the second of the
foregoing is a consequence of the first.

There are several varieties of isostatic correction
in common or occasional use, each depending upon a different earth
model and/or isostatic concept, but all purporting to accomplish
the same purpose. The problem here is that the exact nature of
the isostatic mechanism and structure of the earth's interior is
still a matter of conjecture. Therefore, any earth model and
isostatic concept used is, at best, only an idealized approximation

of the truth. Moreover, each variety of isostatic anomaly must
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have a somewhat different geophysical meaning, and any detailed
geophysical interpretation of isostatic gravity ancmalies must
be made within the context of a given model and mechanism
assumption. Fertunately, a general discussion of isostatic
anomaly properties can be made without specific reference to a
particular model or isostatic concept.

Most geodesists feel that, for geodetic purposes, it
does not matter which variety of isostatic correction is used.
However, the same kind of isostatic correction must be used in a
mathematically precise sad self-consistent manner to reduce all
gravity datea to be applied in deriving the gecdetic products
desired.

The most commonly used concepts of the isostatic
mechanism are the Pratt-Hayford and Airy-Heiskanen systems. Some
geophysical properties peculiar to each of these systems, as well
as the idealized structural models associated with them, are
discussed in Section 3.10. A discussion of the rather complex
formulas and reduction procedures for these systems is given in
Heiskanen and Vening Meinesz (1958), Heiskanen and Moritz (1967),
and other sources.

Both Pratt-Hayford and Airy-leiskanen isostatic
systems require the topographic masses to be moved to considerable
depths beneath sea level. (The - masses in their new location
may be called compensating masses In the most commonly used
Airy-Heiskanen model, all such masses are relocated at depths

greater than 30 kilometers aand up to about 60 kilometers below




sea level, the maximum depth being proportional to the regional
elevation levels. in the most commonly used Pratt-Hayford
mcdels, the masses are evenly distributed between sea level i)
4 : anu denths of 56.9, 96, or 113.7 kilometers. .
The much greater depth of the topographic masses ‘
after redistribution as compared to these masses in their
original above sea level location means that the nature of the
gravitational effect of the deep seated compénsating masses on
a surface gravity observation muct be greatly different than
% that of the topographic masses in their origirail near surface
location. In fact, the gravitational effect of the topography
is local and immediate, while the gravitational effect of the
compensation is regional and distant.

Consider Figure 3-8. The vertical component of the

gravitational attraction, g,> of any mass element, M, varies in
; inverse proportion to the square of the distance between M and
! the observation site P, and in direct proportion to the cosine
} / cf the angle, 9, subtended at the observation pvoint by the vector,
|

g., and the line connecting the observation site to the mass

=
e

element.

g, < 92 (3.8-6)

wow, the topographic masses dirnetly beneath P have

a very small 8 and D, hence, a large vertical gravitational

effect at P. But 8 becomes very large for topographic mass
clements only a small horizontal distance from F, and as MT

s avproaches the horizon, 6 rapidly approaches 9C° and the vertical
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gravitational effect of MT rapidly approaches zero. Thus,

topographic masses nearby P have a large gravitational effect
at P, but topographic masses even a relatively small horizontal
distance away from P have only a minor gravitational effect at P.
\ Comvensating masses directly beneath P, although also
having a small G, have & much larger D than the topographic masses.
Hence the gravitational effect of compensating mass nearby P is
small. As the horizontal distance between MC and P increeses, 6
increases more slowly than for topographicz masses at the same
i horizontal distances (and cos 8 does not beccme vanishingly
small). Hence the gravitational effect of compensation can be
expected to accunulate slowly over a rather wide range of

distance from P. (A detailed discussic» of this effect is given

by Hayford and Bowie, 1912).

Table 3-3, based on graphs in Woollard 11959) shows
the relative gravitational effects of topography and compensation
which exists at various distances away from the point of observation.
For example, the table shows that 90 percent of the total
gravitational attraction (vertical component) at P of the
t topographic masses is generated by those masses within 10
kilometers of the observation point (but culy 4% of the total
gravitational attraction [vertical comyoneni] =t P of the
compensating masses is generated by such masse:c within a
horizontal distance of 10 kilometers from the observation point).
\ This means that local topographic variations can, in fact, be

N treated as being virtually uncoupensated locally--as was done

duririg the discussions of ihe free air and Bouguer anomalies.




FIGURE 3-8

¥ COMPARISON OF GRAVITATIONAL EFFECTS

TOPOGRAPHY VS. COMPENSATION

MT = Element of topographic mass

MC = Element of compensating mass
DT = Distance from observation point, P, to topographic mass element,
MT
DC = Distance from observation point, P, to compensating mass element,
M C
BT = Angle between vertical gravity coumponent, gz, and line connecting
~ observation point, P, with topographic mass element, MT
BC = Angle between vertical graviily component, 8y and line connecting ,

observaticn point, P, with compensating mass element, MC
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[ Sea level €




TABLE 3-3

RELATIVE GRAVITATIONAL EFFECTS
OF TOPOGRAPHY AND COMPENGATION

AT VARIQUS DISTANCES FROM GRAVITY OBSERVATION POINT

= horizontal distance from the point of observation in m

= percent of total toposraphic gravitational attraction (vertical

component ) generated by topographic masses within the indicated
zone
C = percent of total compensation gravitational attraction (vertical

component ) generated by compensating messes within the indicated

zone
tT = rumulative percentages of T
%C = cumulative percentages of C
* sm = small
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The teohle also shows that nearly 100 percent of the
topographic gravitational effect is generated by masses within 50
kilometers distance (about a 1° x 1° area) from the observation
point~~but only 50 percent of the total compensation effect. Xven
at a distance of 166 kilometers (about a 3° x 3° area), only 79
perc=nt of the total compensation effect has been accounted for.
"his means that about 21% of the compensation is due to distant
masses, and that a 3° x 3° area is about the smrllest area within
which the topograshy can be considered to be about 80 percent
compensated locally..

Because of the fact that the gravitational effects
of the compensation are generated by masses which are mostly rather
far from the observation point and consist of an integration of
small components over the whole earth, it follows that the isostati-
correction, 81> is a comparatively slowly varying quantity. Indeed,
the difference between two f1 values at two points fairly close
together (within a local area) will be close to zero. This is
tmie because mest of the components largely overlap for the two

computations.

3.8.3 Geophysical Properties of the Isostatic /nomaly

Isostatic gravity anomalies can be a useful tool for
seophysical and geological interpretation. They interpolate we.l
and are also suitable for geodetic applications. However,
computation of isostatic anmmalies is difficult and time consuming,
and isostatic anomalies cannot be predicted easily using geophysical

methods. 7The latter is true because isostatic anomalies, in #enern’,
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tend to be uncorrelated with elevation variations. The isostatic
anomalies are discussed here mainly because of the insight they
H provide to the types of snomalies which more readily can be
predicted using geophysical methods.
Among the advantages of the isostatic anomaly form is
that it is conservative of mass. Consider equation (3.8-3)

written ia the fornm

bg; = (go + gF) -y - (gB - 'Tg = B # 81

Recall that the term, (g ), is generated by the

+
o &
total mass of the real earth and that the term, y, arises from

the total mass of the normal earth, these two masses being equal

bty definition. The topographic masses within 166 kilometers from

the point P, for which AgI is being calculated, generate the term

(g, = TC - CC), and these imasses moved to locations beneath the

- B
geoid to counteract the compensating mass deficiencies generate the

} / major portion of =_, the moved masses being equal to the topographic

. I

| masses removed in the Bouguer reduction. The balance of gI is

o generated by the effects of distant topography and its compensation,
i.e., all topogrephy and compensation mass deficiencies lccated
more than 166 kilometers from P. Thus, the isostatic anomaly,

like free air anomely, is conservative of mass and useful for

ceodetic as well as geophysicel purposes.

3.8.3.1 Isostasy and the Isostatic Anomaly

S The topogrephic masses, removed in the
Bouguer reduction, are replaced beneath the geoid by the isostatic

correction in such a way that the negative gravitational effec s

L_——-&——-—l—-—u——_—-_-_--“-ﬂ
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of the compensating mass deficiencies, as reflected in the regionally
negative Bouguer anomalies, are cancelled. Note carefully that

all of the mass removed by the Bougrer reduction is fully restored
by the isostatic correction. Thus, if a topographic feature is, in
fact, completely compensated, the positive effect of the mass
restored by the isostatic correction will exactly cancel the
negative effect of the compensating mass deficiencies, and the
resulting isostatic anomaly will be equal to the free air anomaly
less local topographic effects. A positive isostatic anromaly
suggests an exce~s of topographic mass over compensating mass
deficiency, and a negative isostatic anuomaly suggests an excess

of compensating mass deficiency over topographic mass. The

actual situation is complicated by differences between reality

and the isostaiic concept and earth model used in a particular

isostatic reduction.

3.8.3.2 Properties of Free Air and Bouguer Anomalies

as Derived from Isostatic Anomaly Relationships

Once again, consider Figure 3-2. If the
desree of compensation under both the topographic rise and adjacent
lower areas is the same, and there are no lateral density variations
tetween P and § other than those due to topography and its

compensation, then it must be true that

(Agl)

(ag,), (3.8-)

P=
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Expanding by (3.8-3)
(8y)p = (Bg)p *+ TCp + CCp + () + (&) = 7p

(3.8-8)
= (go)Q - (gB)Q + TCQ + ccQ + (gI)Q + (gF)Q =i

Since AgF = go + gp = V> then

(8gp)p = (gg)p + TC, + CCp + (1)

(), + TC, + CC, + (g7)

= (AgF) 8g)q Q Q

Q Q

And, since gB =2m7koh, §h = hP - hQ; and

dropping the small "C terms,

(AgF)P - (AgF)Q =2mnko 6h - TCp + TcQ (3.8-9)

= [ ag e = (gI)QJ
Note that equation (3.3-9) can also be written

in the more general form

(bgg)p = (d8p), = (eg)p - (gT)Q - [(gy)p - (gI)Q] (3.8-10)
Equation (3.8-9) is the general form for
the specific regional relations (3.6-32), (3.6-33), and (3.6-34).
Equation (3.8-9) shows that for the condition
(3.6-15)
(dgp)p = (AgF)Q
to hold, it is necessary that the difference between the attraction
of the topography at P and Q must be equal to the difference

betveen the attraction of the compensation at P and Q, that

2mk o éh - Cp + TcQ = (gI)P - (gI)Q (3.8-11)
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Equation (3.8-11) is a most reasonatle

condition for the existence of a constant degree of isostatic
conpensation at F and Q.

Equation (3.8-9), although derived for
regional gravity relations, can be used to illustrate why local
free air gravity relations depend heavily on local elevation
variations. Within a local area, the topography related term,

2 m k o 8h, varies as rapidly as the topography varies. However,

)

’p (gI) » varies rather slowly

Q

L and is close to zero when P and Q are nearby. Thus, it is

u the compensation related term, (g

mathematically impossible for local topographic variations to be

locally compensated. In fact, as

# (88,)p - (2g;) 0
b then (3.8-0) reverts to the relation (3.6-2k4) previously derived
-

for the local free air anomaly relationship

} / :
/ - = - +
’ (AgF)P (AgF)Q 2 mk o éh TCP TCQ

} Thus, the local free air anomaly relationshin
is actually just a special case of the general free air anoraly

equation (3.8-9). Next, insert the relation

bgp = gy -~ &g * TC + CC + g5 = v

into (3.8-8) to obtain

(he,)y, - (g = - (g]), = ()] (3.8-12)

Q=




-
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Equation (3.8-12) is a more precise version
of (3.7-23), and shows that the regional Bouguer anomaly is, in
fact, a measure of compensation. Again, (3.8-12) applies for
the regional case. For local Bouguer anomaly relations, the right
side of (3.8-12) approaches zero, and the equation reduces to

the local relation (3.7-22)

(2gp)p = (8gg)g
Hence, the local Bouguer anomaly relation is
also just a special case of the general Bouguer anomaly equation
(3.8-12).
Jow, insert (3.8-5) into (3.6-15) which gives

the regional relation

\AgI)P +271ko hP = TCP = (gI)P

= (AgI)Q +21ko hQ - TCQ - (gI)Q

As before, éh = h_ - hQ’ and after some

P

rearrangement,

(bg;)p - (8gy)g = -2 7mko6h+TC, -TC + [(g) - (g)y] (3.8-13)

Note that the right side of {3.8-13) for
the 1sostatic anomaly is the negative equivalent of the right side
of (3.8-9) for the free air anomaly. In the case of the free air
anomaly, the topography is condensed into a surface layer on the
geoid whure it still has a positive efiect on the observed gravity,
whereas the negative gravity effect of the compensating mass

deficiency remains unaltered. In the case of the isostatic anomaly, {
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the topographic mass is removed by the Bouguer reduction causine
a negative effect on obsersed gravity, and restored beneath the
geoid to cancel the compensating mass deficiency, causing a
positive effect on observed gravity.
Note also that, since the Bouguer reduction
is applied to compute the isostatic anomaly, the geologic correction
applies equally to both anomaly types.
In (3.8-13), suppose the point Q is at sea level.

Also, there is no topographic mass above

Then, h. = 0, and 6h = h

Q B
Q to be redistributed beneath tie geoid. Therefore, (gI)Q can only
contain the effects of distant tchography and its compensation. Thus,

(8g,) = (bg)) o -2 mkoh, +TC, - +[(g)

. - - brc ) (3.8-14)

h=hP P
The relative complexity of the above and the fact

that the compensation related terms tend to cancel the elevation

related terms suggest that no simple relationship of the form AgI =

a + Bh can be used to represent isostatic anomaly variations.

A slight rearrangement of (3.8-1k4) gives the form

- (gI)P = [(AgI) -DIC] -2 nkoh, + TCp - TC

(AgI)h=hP h=0 P Q
By (3.8-4), the above reduces to
(AgB)h=hP = [(sg)), o - D] -2 "k oh, + T, - ¢, (3.8-15)

Comparison of (3.8-15), (3.7-24), and (3.7-25)
shows that the a constant in the relation
o s
AsB a + Bh
is a form of sea level isostatic anomaly which lacks distant

topography and compensation etfects.

Next, insert (3.8-5) into the local

relationship (3.6-24) to obtain




i -

111

(AgI)P +2n1koh, -TC_ - (gI)P = (AgI)Q +2mkoh

P P Q

- TCQ - (gI)Q +2n1ko (hP - hQ) - TcP + TcQ

The above reduces to

But, for the local situation, (gI)P - (gI)Q + 0.

Therefore, the local isostatic anomaly relationship is, simply

(8g)p = (2g;), (3.8-16)

Now, (3.8-16), derived for a local situation,
is an equation which guarantees that the same degree of isostatic
compensation exists at P as does at Q. Yet, in the local case,
the topographic feature at P cannot possibly be compensated
locally. The apparent contradiction can be resolved only if
isostasy is a condition with regional, not local, applicability.
In other words, (3.8-16) says only that the same degree of
regional isostatic compensation exists at both P and Q. This is

most reasonable if P and Q are close together within a local area.

3.8.3.3 Properties of the Free Air Anomaly With

Terrain Correction as Derived From Isostatic Anomaly Relationchips

Equstion (3.8-9) may be written in the form

(2g,) (sg,)y =27k oén- [(g), - (gI)Q] (3.8-17)

P Q

where the expressions

(agy)p = (agp)p + TC, -
3.8-1
(ASY)Q = (ASF)Q + 7€,

represent the free air anomaly with terrain correction at points P
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and Q, respectively. This anomaiy form, sometimes called the Fuye
anomaly, is often used in applications of Molodenskiy's solution ¢
to the problems of physical geodesy. !

For the local slituation where (gI)P - (g_T)Q > Q, |

equation (3.6-17) reduces to

(ogy)p - (AgY)Q =2mko éh (3.8-19)

The right side of (3.6-19) is the difference d
in gravitational attraction between two horizontal plateaus

(Bouguer plates), one with elevation, hp, and the other with

elevation, hQ' At first glance this peculiar anomaly form may

L seem to have some application for geophysical gravity prediction

because, for the case of Q at sea level, (3.8-19) becomes

(AgY)h=hP = (0gy), g +t2mkoh, (3.8-20)

which is rigorously in the form
) dgy = ¥ + wh ‘ (3.8-21)
’ From a geophysical viewpoint, however, it is

difficult to understand why the free air anomaly with terrain

I

r K correction has achieved ready acceptance for geodetic applicationms.
} Insertion of the definition (3.8-17) into the basic free air

r
\

. anomaly relation (3.6-5) gives the equaticn

bgy = (go + gF) - (y - 7C) (3.8-22)

Recall “hat the total mass of the real earth
generates the term, (go + gF), the total mass of the normal earth
generates the value, Y, and these two masses are defined to be <

equal. Therefore, the term, (y - TC), implies the existence of

! less mass than the total mess of the real earth! Anomaly forms {

- 2.

—
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whica are not mass'conservative are usually avoided for geodetic
application.

Equation (3.8-22) shows that the anomaly, L&y
will tend to have a positive bias in areas of rugged topography
where TC is large--much as the Bougucr anomely has a negative bias
in movntainous areas. Thus, the regional form (;.8-17) has no
isostatic significance and is difficult to interpret from a
structural standpoint since the topographic term has =2 positive
bias and the manrnitrde of the bias is solely a function of the
ruggeaness of the local terrain. Consequently, it appears most

unlikely that AgY is a useful form for gravity prediction.

3.9 Unreduced Surface Ancmaly

The urreduced surface anomaly, Ags, defined by

bgg = 8y = Y (3.9-1)

is not in the same class as the gravity anomaly types previously
discussed because the reduction to sea level, égo, is omitted. ‘
It has no geodetic value on the continents, and never before has
been used for geophysical analysis.
There are two ways to view the unreduced surface anomaly.
One is that, since go applies at the earth's surface and y
applies at sea level (technically, at the ellipsoid surface),
then Ags is really undefined since its point of application is
ambiguous. The second view, more suitable for geophysical purposes,

is that the only purpose of y in (3.9-1) is to serve as a kind of

latitude correction which removes the syrtrmatic gravitational
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effects of the eartﬁ's flattening from observed gravity. Using
the latter interpretation of y, then variations in Ags are
tantamount to variations in observed gravity caused by mass
distribution irregularities in the real earth.

The normal regioral relation for the unreduced surface anomaly

is given by equation (3.6-18)

| (pe © = (Ags)Q - 0.3086 sh (3.9-2)
which, if Q is take sea level, is rigorously in the form
(dgg) = £ + nh (3.9-3)

vhere the constants, £ and n, may be determined by a linear
regression analysis of mean values within a region of homogeneous

structure.

Using equations (3.6-32), (3.6-33), and (3.6-34) and the
difference between (3.9-2) and (3.6-15), estiuated average regional
- relations between unreduced surface anomalies and elevaticns within

the United States, based upon 1° x 1° mean values, are .

bgg =+ 18- 0.0L12 H 0 < H < 200 (3.9-4)
_ dgg = - 3-0.300 H 200 < H < 1800  (3.9-5)
bg. =~ Th - 0.262 H H > 1800 (3.9-6)

o

where H = 1° x 1° mean elevation in meters.
The normal local relationship between Ags and elevation is

given by equation (3.6-23).

(AgS)P = (AgS)Q - 0.3086 6h + 2 m k o 6h - TC, + TCQ (3.9-7)
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which, if Q is taken at sea level, can be written in the form
=) + 9= .
(dgg)p = ¢ + 6h (3.9-8)
Using the limits of 2.2 to 2.9 gm/cm? for density, 0 %o 0.05
mgel per meter for the terrain corrections, and assuming the free
air gradient to be constant, then the limits on € are
- 0.2664 < & < - 0.1370 (3.9-9)
3ince, for the case of complete compensation, 6 = - 0.3086,
then a more comprehensive limits statement is
- 0.3036 < 6 < - 0.1370 (3.9-10)
Empirical tests in the United States suggests that a good
average value for 0, using pcint data, is (Voss, 1972)

8 = - 0.2287

Relation (3.9-4) gives a value for 6 which lies outside of
the limits (3.9-10). However, (3.9-L4) is based upon the free
air anomaly reletion (3.6-32) which, as has been mentioned

previously, was Very poorly defined.

3.10 Isostatic Models, Mechanisms, and Analysis

3.10.1 Isostasy
Isostasy refers to a state of equilibrium in the
outer parts of the earth in which (1) the land masses which extend

above sea level are counterbalanced by a compensating mass deficiency

beneath sea level, and (2) the ocean basins which contain low density
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water are counterbalénced by a compensating mass excess beneath
the ocean floor.

The general validity of the isostatic principle
has been established conclusively using purely geodetic arguments.
For example, the fact that free air anomalies are largely
uncorrelated with regional elevation changes can be cited as
evidence of the existence of regional isostatic balance. The
reader is referred to Heiskanen and Vening Meinesz (1958) for
free air, Bouguer, and isostatic gravity anomaly statistics
which demonstrate that, on a regional hasis, the mountains and
oceanic basins are very close to being in complete isostatic
~quilibrium.

Some departures from regional isostatic balance do
exist, for example, recently deglaceated regions. Also, the crust
of the earth appears to have sufficient strength to maintain
local mass distribution variations such that the local density
and topographic irregularities are largely uncompensated. The
strong correlation between free air anomalies and local elevation
variations, for example, proves that local topographic irregularities
are uncompensated.

The exact physical mechanisms of isostasy are, as
yet, unknown. However, there are a number of isostatic theories
which probably provide at least a good approximation of the
isostatic mechanisms. Each of these theories specifies an exact
manrier in which the compensating mass deficiencies or excesses

are distributed within the earth. One such theory must be adopted

and used as a basis for determining the isostatic correction in
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isostatic anomaly computations and, in general, for estimating
the gravitational effects of the compensating masses.
The two "classic" 1sostatic theories are thuse of

J. B. Pratt and G. B. Airy. Both date from 1855.

3.10.2 Pratt Isostatic Theory

In the Pratt isostatic system, the deficiency of
mass beneath the land areas and the excess of mass below the
oceanic areas are evenly distributed between ground or sea floor
level and some depth, called the depth of compensation, wher-=
isostatic equilibrium is complete. It follows that each column
of matter with unit cross sectional area, extending to the earth's
surface from the depth of compencation, contains equal mass.

Equal mass above the level of compensation in
the unit area crustal columns means that the pressure must be
equal everywhere at the level of compensation. Indeed, the
meaning of isostasy is "equal pressure."

Pressure is defined as force per unit area,

P=r (3.10-1)
where
P = pressure
F = force
A = area

Force, in turn, is defined as the product of mass

and acceleration; in this case, the arceleration due to gravity

F = mg (3.10-2)
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there
m = mass
g = gravitational acceleration

and mass is the product of volume and density

m = Vo (3.10-3)
where
V = volume
0 = density
Therefore, combining the above equation, pressure
is given by

P = 1%5 (3.10-4)

Consider a series of columns with unit cross
sectional area extending from the level of compensation up to
the surface of the earth, Figure 3-9. The upper surface of
column S is at sea level and its height, hS’ is equivalent to
the distance from sea level to the depth of compensation.
Column P stands “eneath a mountain area, and the elevation
of its upper surface above sea level is Ah = hP - hs. Column Q
stands beneath an oceanic area whose water depth is hQ - hS'
Suppose the pressure is equal at the depth of

compensation for all columns. Then

or, using (3.10-4) for columns P and S

Vso

8s Vo8
°5 . EET (3.10-5)

As Ap
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Since the volume of each column is the product of

its cross sectional area and height, h,

V = Ah (3.10-6)

then (3.10-5) becomes

i h.o (3.10-7)

%s€s = Bpd

pép
Assuming that the acceleraticn of gravity is constant

at the level of compensation leaves

- {- s
heOg = hpop 5.10-8)

t Equation (3.10-8) shows that the density of a Pratt
crustal column is inversely proportional to its height. Thus,

column P has a lesser density, and column Q has a greater density

than column S.

Now, solve (3.10-8) for op and subtract o, from

both sides.

Simplification leaves

-(h, -h) o bho
. bo = E E_5_ _ = B (3.10-9)
hp P

Equation (2.10-9) shows that, in the Pratt

isostatic system, isostatic compensation is achieved entirely

by a uniform variation in density above the level of compensation.
J. F. Hayford (1909) modified Pratt isostatic

theory somewhat. According to Hayford, the depth of compensation

g . is measured from the topographic surface rather than from sea level,
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* FIGURE 3-9

CRUSTAL COLUMNS

FOR PRATT ISOSTASY
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FIGURE 3-10

CRUSTA! COLUMNS

FOR PRATT-HAYFORD ISOSTASY
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Figure 3-10. Thus, in the so-called Pratt-Hayford system,
equation (3.10-9) must be modified to read

- AhoS

e { -
Ao b {3.10-10)

where D = depth of compensation.

The depth of compensation producing the smallest
isostatic gravity anomalies in the United States was determined
to be 113.7 kilometers (Hayford and Bowie, 1912). In the Pratt-
Hayford system, therefore, complete isostatic equilibrium is
achieved near the vop of the aesthenosphere.
u Gravitational analysis of the structure of the crust
and upper mantle is seldom done using Pratt-Hayford isostatic
theory probably beceuse the only information provided by this
theory--changes in mean density of the earth above the level

of compensation--is insufficiently diagnostic of corresponding

B

changes in structure. Also, the infinite Bouguer plate type
r E formula (commonly used for this type of analysis) for the

gravitational attraction of Pratt-Hayford compensation, 1
} !

Mg, =-2mkAoD (3.10-11)

is trivially related to the corresponding formula for attraction

of the topography

gy =2 Tk o5 b (3.10-12)

Insert (3.10-10) into (3.10-11) and the latter

reduces immediately to (3.10-12).
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3.10.3 Airy Isostatic Theory

Airy postulated the existence of a relatively
thin crust standing above a denser rock base (the mantle). In q
' the Airy system, the crust beneath the continents extends downward
into the mantle and, conversely, the mantle under the oceans
T‘ projects upward into the crust such that the total mass per unit
area down to some level Jjust beneath the deepest continental root
is everywhere equal. GEusentiaelly, Airy's system has a crust of
uniform density floating in a denser mantle material in accordance
‘ with Archimedes Principle.

W. A. Heiskanen developed practical procedures for

computing isostatic anomalies usiug the Airy principle in 1938.
Also, ucing the geophyvsical knowledge of the day together with

geodetic arguments, he proposed density and thickness values

b approprizte for Airy-type isostasy.

+ More recently, G. P. Woollard has used modern |
) geophysical and geochemical knowledge and evidence to deduce

} ; the most probable density and thickness parameters for an Airy-type ‘ ;

isostatic system. Woollard also introduced and perfected the

F. "crustal colunn" method of gravity analysis used in this study.

' Consider a pair of crustal columns floating in

|

| the mantle in accordance with Archimedes principle, Figure 3-11.

' The upper surface of column $ is at cea level; the upper surface
of column P extends h kilometers above sea level. In order to

hydrostatically support the additional mass above sea level,

|
[ column P has a root increment which extends a distance AR kilometers
)
)

q
l
)
{
{
i
I




126

FIGURE 3-11

CRUSTAL COLUMNS

FOR AIRY ISOSTASY
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deeper into the mantle than column S. Column S is called the
standard or reference sea level column. Column P represents a
column of any height whose mean density is the same as the standard
column.

Appropriate parameters for these Airy-type crustal
columns, as determined by Heiskanen (Heiskanen and Vening
Meinesz, 1958) and Woollard (1969a), are given in Table 3-k.

In Table 3-i, O is the expected mean density of
the standard crustal column, om is the expected mean density at

the top of the mantle, H, is the expected thickness of the

S
reference sea level crustal column, and H/R is the expected ratio of
free board to root. The reader is referred to Woollard (1962) for
an extensive discussion of the type of rationale used to deduce
these values from geophysical, geochemical, and gravimetric
evidence.

Either set of parameters may be used for isostatic
anomaly computations since both ensble a self-consistent determination
of the gravitational effects of topography and its isostatic
compensation. However, Woollard's values, being compatible with
known geophysical parameters, are more appropriaile for studies
of crustal and upper mantle structure using gravity anomalies
together with other geophysicsl data.

To develop the basic equations for the Airy isostatic
principle note that, according to Archimedes Principle, a floating

body displaces its own mass. Therefore, the mass of the standard

column, column S of Figure 3-11, is equal to the mass of the mantle

material displaced by its root.
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TABLE 3-bL

PARAMETERS FOR AIRY-HEISKANEN AND AIRY-WOOLLARD ISOSTATIC MODELS

PARAMETER WOOLLARD HEISKANEN
o 2.93 gm/cm3 2.67 gm/cm3
o 3.32 gm/cm3 3.27 gm/cm?
HS 33 km 30 km

H/R 1/7.5 1/k4.45
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Since, by (3.10-3) and (3.10-6)

m = Vo
and, V = Ah
then, m = Aho

where

m = Mass

V = Volume

A = Cross sectional area

h = height

0 = density

Therefore, for the standard crustal column, it must
be true that
AHSOS = ARom

or, dropping the common area factor

Ro ' (3.10-13)

Hgog = Rop, .

wthere the symbols are defined in Figure 3-11.
Equation (3.10-13) can be used to demonstrate the
self-consistenry of each parameter set in Table 3-k. From Figure 3-11,

it is evident that

Using Woollard's values

_T_'z =l'—2 \‘_'
R = 8.5 HS 8.5 (33) 29.118 km

Similariy, using Heiskanen's values

R = 24.495 km (
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Insertion of these and other Table 3-4 values

into equation (3.10-13) shows that

l (33) (2.93) = 96.7 = (29.118) (3.32)
for Woollard's values and
B
{30) (2.67) = 80.1 = (24.L95) (3.27)

for Heiskruen's values.

Equation (3.10-13) can be modified to reflect

changes in crustal rocot thickness due to changes in elevation.

To convert from the standard sea level column, column S of

Figure 3-11, to a general crustal column of elevation, h, column

and that R must be replaced R + AR. Putting these substitutions

into equation (3.10-13) gives

Q 1

(h + H, +8R) oo = (R+4R) o (3.10-1b)

A simple rearrangement of terms gives

'/ . > 2 =15
oh (om os) AR (3.10-15)
g or, in another form
95
AR = ——=—h (3.10-16)
0 -0
m S

Equations (3.10-15) and (3.10-16) are basic for
Airy-Heiskanen isostasy and show that equilibrium is attained

by variations in the depth of the crustal roct but without

variations in density.

P of Figure 3-11, it is evident that HS must be replaced by h + Hs £ %

e NN
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Vioollard has modified the basic Airy type equations
to allov for a variation in crustal density as well as in crustal
thickness~~which is more in keeping with the situation actually

found in nature. Let

g.,=0.+ Ao (3.10-17)
where

O, = actual mean crustal density

0, = expected mean density for the standard sea level crust
Replace oo by 0. + 40, in equation (3.10-14) to
obtain
+ = 4 Jid=
(h + Hy + AR) (og + 40,) = (R + AR) o (3.10-18)
or,

h (oS + Aoc) + AR (oS + Aoc) + HSOS + HSAGC = Rom + ARom

Considering (3.10-13) and (3.10-17), the above

reduces to

= - ) AR .10~
oCh + ba M (om o) OR (3.10-19)
or, in another form
o,h + Ao H
AR = _.C_____C__.S. (3_10_9_0‘)
Gm - a

Equations (3.10-19) and (3.10-20) express Airy-
Woollard isostasy*. One further modification can be made to

allow inclusion of an anomalous mantle density. Let

*The expression, "Airy-Woollard isostasy," is used here for the first

time and connotes a variation of the Airy isostatic model which allows

density variations and uses Woollard's values for the crust/mantle

parareters of the model.
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Oy = 0 + by (3.10-21)
where
Oy = actual mean density of the upper mantle
gl = expected mean density of the standard upper mantle
Replace 0 by o, + Ag, in (3.10-18) to obtain
(h + Hg + AR) (oS + Aoc) = (R + 4R) (oM + AoM)
or,

+ Ao ) + Ho. + H Ao

3 A
) (oS + L‘C) + AR (cs c % 89

= RoM + RAoM + AR (oM + AOM)

Considering (3.10-13), (3.20-1T), and (3.10-21),

the above reduces to

o = — ? D
och + bo fg hoy R (oM. oc) AR (2.10-22)

or, in another form

oh + Ao H,L - 60 R
iR = =2 5 o (3.10-23)

M C

Since HS = F - R, the two equations above also may

be written in the form

A = i .10-24
och + (AoC AOM) HS + AoMF (oM oc) AR (3.10-24)
oh + (Ao, - Ac,) H, + Ag F
{‘ a)
MR = = P aRSr R — (3.10-25)
M C

The cifference between Airy-Heisanen isostasy (no
density variation) :ommonly used for isostatic anomaly computations
and the geophysically more realistic Airy-Woollard type of isostasy

(density variation possible) is given by the differenze between

equations (3.10-25) and (3.10-16)
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oh + (Ao, - 6. ) H. + Ao F o h
oz M5 M 5 (3,02
M C M S

For the case of zero elevation (h=0), the above
reduces to

(ao, - to,) H, + Ao, F
oap = ———H = N (3.10-27)
- M &

Equation (3.10-27) shows that an increase in crustal
thickness is required to maintain isostatic equilibrium when
mean crustal density exceeds the standard value, when mean upper
mantle density is less than the standard value, or both. Conversely,
a decrease in crustal thickness is necessary to maintain isostatic
equilibrium when ¢

< Og> when o, > O or both. Since usually

C M
onCI > IAoMI, the crustal effects usually are predominant.
Now a greater than normal mean density in the crust
(Ao, positive) must exert a positive influence on observed gravity

C

but, fer this case, an insufficient amount of compensation
(AR too small) is predicted by Airy-Heiskanen isostatic theory
which ignores the effects of variations in mean crustal density.
As a result, the Airy-Heiskanen isostatic anomaly may be positive
even though isostatic compensation is complete. Conversely, a
lower than normal mean crustal density can yield a negative
Airy-~Heiskanen isostatic anomaly even though isostatic compensation
may be complete.

In fact, all isostatic anomaly forms are subjJect to
and dependent upon the isostatic model chosen to compute them.

If the model is incorrect, the anomalies may give false indications

of iscstatic conditioms.
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A summary of the effects on crustal rcot increment
of variations in mean crustal and upper mantle deunsity is given in
“abie 3-5. liumerical examples of the effects of crustal density

variations on Airy-type isostasy are given by Woollard (196€9).

3.10.4 Gravity Analysis Using the Airy-Heiskanen Model

The Airy isostatic model can be used in a simgle
gravity analysis schenie to compute the magnitude of gravitational
effects generated by varying isostatic conditions. Such analyses
are often uceful in deducing local or regional corrections
for gravity predictionm.

The Airy-Heiskanen version is used here for the ssake
of simplicity. However, use ¢f the Airy-Woollard version is
recommended in all cases where the additional paraméters (Aoc and
Anq) required by this model are known or can be determined.

The crustal colunns of Figure 3-11 are appropriate
Jcr Airy-Heiskanen isostasy. The gravitational attraction. gT,
of the topograrhic mass ir column P can be approximated closely

tv using the Bouguer plate formula (3.7-12),

g = 2T ko h (3.10-28)

which also can be recognized as the left side of equation (3.10-15)
multiplied by 2vk. Eimilarly, the gravitational attraction, £,
of the crustal root which compensates the topographic mass in

z2olumn F can be approximated by

T A n

5. = 2=k (@ = ¢ ) Aw {7,10-29}




B

|
|
|
|

136

a
c

TABLE 3-5

EFFECT OF DENSITY CHANGES

ON AIRY CRUSTAL ROOT

€ M c M
2.93 3.32 0 0
2.98 3.3k +0.06 +0.02
2.98 3.32 +0.06 0
2.98 830 +0.06 -0.02
2.87 3.3L -0.06 +0.02
2.87 3.32 -0.06 0
2.87 3.30 -0.06 -0.02
2.93 3.34 0 +0.02
2.93 3.30 0 -0.02

=2,93, o =3.31, H, =33, R= 29.118
m 3

+3.9
+5.8
+8.0
g
.
-3.3
1.k

+1.6

SAR
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which also can be recognized as the right side of (3.10-15)
maltiplied by 27k.
Now recall the general difference equations for

the free air anomaly (3.8-10) and Bouguer anomaly (3.8-12)

(bgg)p - (AgF)S = (e;T)P - (gT)S - [(gI)P - (gI)S]*
(28p)p - (dgplg = - [(Q;I)P - (gI)S]

Insertion of (3.10-28) and (3.10-29) into the above

gives

- = - ) - R i
(AgF)D (AgF)S 2 mk og (hP hS) [2 7k (om os) (ARP ARS)j

P

(3.10-30)

(AgB)P - (AgB)S = -[2rk (om - oS) (4R, - ARS)] (3.10-21)

Equations (3.10-30) and (3.10-31) are the fundamental

relationships for gravity anomaly analysis using the Airy-Heiskanen

isostatic model, and enatle computation of actual values for the

differences in free air and Bou' .er anomalies over columns & and P,

Tisure 3-11. 3
Asgume an elevation of one kilometer (hP =1 km)

for column F. The length of crustal root (ARP) required to

isostatically balance one kilometer of topography is readily

determined from the free board to root ratio. Oince, for the Airy-

Heiskanen system, F/R = 1/Lk.45, then AR = L.L5 km because the

*#™ e terrain correction terms have been omitted in this aporoximaticn.

“he change of subscript Q to S is obvious.
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change in F is 1 km. Alternatively, the value for 4K can be

deternmined nsine equation (3.10-16) and th¢ appropriste Airy-

lleiskanen parameters. From Table 3-h

on <4201 L)ooy 5 (3.1.0-32)

The valuez for the standard sea level column,

column & of Figure 2-11, are h. = 0, and AR, = ).
[Pl

L

Putting valuves appropriate for ~nlumns t and 0,

v

Figure 3-11, and the Airy-:eiskanen parameters from Yable 3-4 intn

equations (3.10-30) and (3.10-31) shows that

(ogp)y, - (AgV)Q = (k1.91) (2.67) (1-0)

- [(b1.91) (3.27 - 2.67) (b.b5 - 0)} =0
and

(ag_ ) . = = [(b1.9L) (3.27 - 2.67) (L.ks - 0)] = - 111.9 meal

(hgp) E'Q

S
/ The free air anomaly result confirms the condition
(3.6-15) and the Bouguer anomaly result confirms the approximate
relation (3.7-23) for the case of a constant degr=e of corm cnsation
in columns S and F.
The geophysical gravity prediction methcds assume
the existence of a constant degree of regional compensation from

one 1° x 1° area to the next--which in most rcases is entirely

realistic, However, abnormal isostatic conditions are encountered

L occasionally where changes in degree of regional compensation occur
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and must be included in the prediction scheme as a regional
correction. In addition, local corrections must be determined
for certain types of local structures whose local gravitational
expression is generated by isostatic effects as well as topographic
variations and near surface density contrasts. Gravity analysis
using crustal models can be a useful technique for developing
such corrections.

Consider, for example, the upper model of Figure 3-12.
Column Q is in complete isostatic equilibrium and has a topographic
mass whose elevation is one kilometer (hQ = 1 km). Therefore,
the length of its crustal root increment using Airy-Heiskunen
parameters is L.k5 km (ARQ = 4,45 km). The topographic mass on
column P has a lower elevation than that on cclumn Q (hP < hQ),
but the depth of its crustal root is identical to that of coliumn §
(ARP = ARQ).

The upper model of Figure 3-12 is essentially a
"pefore" and "after" situation where column P might have been
created by rapid erosion of the topography or by rapid melting of
a glacial ice load atop column Q. There has been insufficient
time for colvmn P to reattain isostatic balance after topographic
mass removal--this condition is simulated by assigning the same
length of crustal root to column P as to column Q. In other words,
column P is over compensated (too deep a crustal root).

Suppose the elevation of the topographic mass atop

column P (upper model) Figure 3-12 is 0.95 km, the topmost 0.05 km

of mass having been removed by rapid erosion. Using hP = (0.95 and

-
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FIGURE 3-12

AIRY ISOSTATIC MODELS
FOR RAPID EROSION,
GLACIER REMOVAL,

LOCAL UNCOMPENSATED TOPOGRAPHY,

AND MAJOR HORST
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other values appropriate for the model into the general difference N
equations (3.10-30) and (3.10-31) shows that
(bgg )y, - (Agr)q = (b1.91) (2.67) (0.95 - 1.0) - [(b1.91) (3.27 - 2.67)

(L.45 - L.US) = - (6 - 0) = - 6 mgal (3.10-33)

gg)g = - [(41.91) (3.27 - 2.67) (b.4s - L.k5)] =0 |
{

(3010"3’4)

(3gg), - (8
The free air anomaly result confirms that the relation
(3.8-9) reduces to (3.6-24) in that the second term vanishes, and
the Bouguer anomaly result confirms the relation (3.7-22) for
b the case of an uncompensated topographic difference.
In straight forward fashion, the correction to be
[ applied for a prediction iu terms of free air anomalies is given

directly by the above computation, in this case - 6 mgal--which

* approximates the local correction actually required for some eroded

mountain areas. 'The correction to be applied for a prediction using
Bonguer ancmalies is also - 6 mgal, not zero as is suggested by

the ahove computation. The reason for this is that the Bouguer
anomaly predicted for column P assuming compensation will be too
positive. With a constant degree of isostatic compensation,

equation (3.10-31) gives

(Ae;B)P - (AgB)Q = -2 1k (3.27 - 2.67) (4.23 = L.k5) = + 6 mgal

vhere

_ 2.67 (0.95) _
B = S r o567 = 423 kn
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The actual difference, as computed by (3.10-3L) is

~ero. Therefors, the correction to be applied is

(éAgB)A - (6AgB)C =0-6=-6 mgal
Wwhere
(GAgB)A = actual difference in Bouguer anomaly
(6AgB)C = difference in Bouguer anomaly ascuming a constant

degree of compensation

Consequently, for prediction purposes, the correction
computed by (3.10-30) is applicable to predictions made in terms
of either the free air or the Bouguer anomaly.

For the case of ice load removal, the computation is
somewhat more complex because the density of glacial ice (0.917

gm/cms) must replace the mean crustal density for the topographic

segment of height h, - h_.. For this example, assume that hP = Q0.7 knm

Q B
and, as before, hQ = 1 km then,
~ _{0.7) (2.67) + (0.3) (0.917) _
AI\ = 3.?7 - 2.67 & 3057 km
and
o 0 = \ o
(AgF)P (AgFIQ (ki 501 ) (0.927 @:T = 1.0

- [(41.91) (3.27 - 2.67) (3.57 - 3.57)] = - 12 rgal
In fact, both highly eroded mountain areas and
recently deglaceated regions are typified by ancmalously negative
gravity anomalies. In both rases, the over compensated crustal
tlocks should begin to rise in order to reattain a condition of

isostatic equilibrium. The rate of uplift can often be correlated

with the negative anomaly and a regional or local correction can be
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Jeveloped from this relationship rather than by use of a crustal
model.

Similar models can be applied to compute gravitational
effects associated with other types of structures which, typically,
are isostatically unbalanced. The method fails in some special
situations such as areas of heavy sedimentation which, logically,
should be under compensated due to rapid accumulation of additional
surficial mass. By observation, however, such areas generally are
not characterized by a positive bias in gravity anomalies. A
possitle explanation for this phenomenon is that the negative
gravitational effects of the low density surficial sedinents tends

to counterbalance the positive gravitational effects of under

cempensation.

3.10.5 Limitations of Airy Isostatic Theory

Airy isostatic theory assumes that isostatic compensaticn
is achieved totally by the crust floating in a denser plastic mantle
material. The Airy-Heiskanen model additionally assumes that
compensation is achieved entir~ly by variations in crustal thickness
(i.e., without variation in density). Recent interpretations of
seismic refraction and reflection data suggest that the Airy-

Heiskanen assumption is an oversimplification.

ilaps of crustal thickness and seismic velocity recently
published by Pakiser and Zietz (Pakiser and Zietz, 1965), for
example, chow that there is no appreciable crustal thickening

under most .ountalinous areas in the United States. Yet, th -

iiry-Heiskanen model definitely requires that crustal thickening (
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take place under areas of high topography and vice versa. These

maps also show that the crust is abnormally thick in comparison

to topographic heights under the western Great Plains, and abnormaily
thin in comparison to topographic elevations under the Basin and
Range’ province.

Consideration of density changes in the crust and
mantle as indicated by changes in seismic velocity, using the Airy-
Woollard isostatic model, satisfactorily explains much of the crustal
thickness variations which appear abnormal in terms of the
Airy-Heiskane; model (Woollard, 1966, 1968c, 1969bt; Strange and
Woollard, 1964). However, even the Airy-Woollard model cannot
completely explain all observed crustal thickness relationships.
Evidently, isostatic compensaticn is not always totally achieved
by density contrasts at the crust-mantle boundary-in at least some
instances there must be additional density contrasts within the
mantle which account for part of the compensation. These have
yet to be modelled successfully.

Although Airy-type isostatic gravity analysis cannot
be applied too literally, they cannot be discarded either since
such analyses provide an understanding of certain types of gravity

anomaly occurrences which can be obtained in no other way.

3.11 Other Geophysical Considerations of Importance to Gravity

Prediction
Before attempting geophysical gravity prediction, the physical
ecientist should be familar with the nature of lateral and vertical

variations in the crust and mantle of the earth, as deduced from

a
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various types of geophysical measurements. The reader is referrei
to the ample pubjiished literature to obtain this information.
In addition to the works authored or co-authored by

G. P. Woollard, the following are recommended: Jacobs et al., 1970;

Garland, 1971; Issacs et al., 1968; Jeffreys, 197C; and Stacey, 1969.
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L. NORMAL GRAVITY ANOMALY PREDICTION METHOD (NOGAP)

L.1 PFundamental NOGAP Prediction Formula

The Hormal Gravity Anomaly Prediction Method (NOGAP) can
be used to predict mean gravity anomaly values for most continental
1° x 1° areas whether or not any gravity measurements exist within
those 1° x 1° areas. For this reason, NOGAP is the geophysical
gravity anomaly prediction method most frequently used, especially
in regions which contain a minimum of gravity measurements.

Input data required for NOGAP predictions includes 1° x 1°
mean elevation values and geologic, tectonic, and geophysical
rnaps and documents which provide information sufficient to enable
analysis and interpretation of the structures and conditions which
cause mean gravity anomaly variations. Come measured gravity data
is helpful--but not required.

A 1° x 1° mean Bouguer gravity anomaly is predicted by the
HOGAP method as the sum of four terms, each of which is individually
determined. The first two terms, basic predictor and regional
correction, contain the regional component of the prediction.

The two remaining terms, local geclogic correction and local

elevation correction, contain the local component of the prediction.

A = +g +g + L
Bgp = BP + g, + g + g (b.1-1)
where
Ag = predicted 1° x 1° mean Bouguer anomaly

B
BP = basic predictor

gs = regional correction
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local geologic correction ’

"
=
[}

lccal elevation correction l

The predicted 1° x 1° mean free air anomaly is obtained from y

the predicted 1° x 1° mean Bouguer anomaly by the use of equation

(3.7-1b)
¢ beg = EB +0.1119 h (k.1-2)
where ;
ZE% = predicted 1° x 1° mean free air ahomaly - o
h = 1° x 1° mean elevation |
& L.z Basic Predictor
b -~
4L.2.1 Discussion \*ihthmﬁﬁia,h‘
The existence of constant (linear) relationships ‘
between changes in the regional component of mean Bouguer gravity

anomalies and changes in the corresponding mean elevations has
been established conclusively by Woollard (1968b, 1969a) and
Wilcox (1971). The simplicity, coasistency, and almost universel
occurrence of such relationships together with the fact that mean
elevation data is the most widely available geophysical data on
the continents makes this type of correlation an ideal foundation
for the development of the fundamental prediction function called
the basic predictor (BP).

The hasic predictor used in NOGAP prediction is the
equation of the linear regression between 1° x 1° mean Bouguer

anomaly values and the corresponding mean elevation values, essentially

]

equation (3.5-8) or (3.7-27T)
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BP = a_+ 8_h (L.2-1)

where

BP = basic predictor

w
"

| o
1]

R regression constants

mean elevation

The basic predictor equation (L4.2-1) is derived in a
region where the gravity anomaly field is known (control region)
and applied to predict basic regional gravity anomaly values in an

L adjacent region (prediction region) which contains few or no gravity

measurements. Both control and prediction regions should be

v

contained within the same geologic/tectonic province.
The size of the geologic/tectonic province whose mean

anomaly--mean elevation relrtionship can be defined by a single

basic prediction function is variable. The province may be quite
large (Furope, Rocky Mountains Cordillera, etc.) or rather small
(Baltic Shield, Korean Peninsula, etc.). Also, different basic

predictors sometimes are applicable to high, intermediate, and low

— —————

mean elevations. The extent of applicability of each basic

predictor must be established by careful observation of the

relationships which exist within the control region.
’ In deriving and applying 'he basic prediction function,
equation (4.2-1), the 1° x 1° mean Bouguer anomaly values often

are correlated with 1° x 1° mean elevation values (ODM). Alternatively,

& more consistent regression may be obtained by correlating 12N

mean Bouguer anomalies with one of two types of weighted 3° x 3°

| ' mean elevation values (ME), Figure L-1.

-
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b FIGURE L-1

WEIGHTED 3° X 3° MEAN ELEVATIONS (ME)

Each square is a 1° x 1° area.

Numbers are weights to be assigned to each 1° x 1° mean elevation

(ODM) when computing the ME.

The computed ME values are to be correlated with the 1° x 1°

~ mean Bouguer anomaly value for the center 1° x 1° area.




1510

ME,

ME,
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The basic predictor can be interpreted geophysically
as an indicator of the isostatic, crustal, and upper mantle density
distribution conditions which characterize each geologic/tectonic 'H
province. The variable form of the basic pr- dictor which is
applicable to different provinces probably is caused by differing

isostatic mechanisms and variations in crustal and upper mantle

density distribution properties. A major strength of the NOGAP
method is that such variations can be taken into account without
having to construct precise models or make assumptions about the

mechanisms involved.

4.2.2 Procedure

Step 1:  Divide the total area to be worked into major
geologic/tectonic provinces using published geologic/tectonic/
geophysical maps and documents.

Step 2: Compute and/or “abulate 1° x 1° mean elevations
(ODM) and weighted 3° x 3° mean elevations (ME) for each geologic'
tectonic province. Predict and tabulate 1° x 1° mean Bouguer wnalies
(Zéﬁ) for those regions of each geologic/tectonic province where
measured gravity data is available (control regions).

Step 3: Determine local geologic corrections, EL, and
local elevation corrections, Eﬁ, for all 1° x 1° areas within the
control region and insert these into the tabulations made in step 2.

Step U: For each geologic/tectonic provirce, make
) vs. OPM, (ZE£ - EL

) is the regional component of the 1° x 1°

- gE) vs. ME , and (AgB =& = 55)

plots of (AgB - 8

vs. ME?' The value (AgB - gL

mean Bouguer anomalies which corresponds to the ODM values; the value




|
%
|

I'53

(AgB =g = Eﬁ) is the regional component of the 1° x 1° mean Bouguer i

anomalies which corresponds to the ME values.

Step 5: Examine each plot. If a single regression
line provides a good linear fit to the plotted points proceed to
step 10. Otherwise, continue with step 6.

Step 6: Reconsider EL determination. Revised correction
values for some of the local structures in the control area may
provide a better linear fit. In fact, this process is often helpful ‘
in refining local geologic corrections determined by the empirical
or analytical methods in the prediction areas.

Step 7: PRe-examine the geologic/tectonic province
boundaries determined in step 1. Adjustment of these boundaries and/or
definition of additional provinces frequently is the gnickest way
to create order out of chaos on the plots. Conversely, it may be
possible to combine two or more provinces which have an identical
mean anomaly--mean elevation relationship.

Step 8: Consider subdivision of provinces into high,
intermediate, and/or low mean elevation regions. This procedure is moct 7
useful when the original plot shows linear segments joined by
directional discontinuities.

Step ©: A slightly non-linear (curved line) relationship
is one indicator of possible necessity to apply a regional correction,

Eﬁ. An unacceptably large point scatter remaining after steps 6-8 have
been completed is another indicator of a need for a Eh. For basic
predictor derivation in such cases, determine the regional correction,

subtract it from (KEé - g ) and (AgE -8 - Eﬁ), and repeat steps

L

4L-8 as necessary.
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Step 10: Select the most consistent plot (smallest
point scatter) to represent each geologic/tectonic province.

Compute the final linear regression constants, a_ and BR’ and

R
associated error functions using a least squares solution

(Appendix D). The constants, o, and BR’ are inserted into

R
equation (L4.2-1) which is applied in the prediction region of
each province.

Options: Many who have considerable experience in
geophysical gravity prediction prefer to use a programmable
desk calculator (or high speed electronic computer in instances
where the amount of data is large) together with an analysis of
residuals to accomplish steps L through 9. However, use of the
plots as described is still desirable not only for bringing out
the rationale of the basic predictor derivation process but also
for recognizing gaps in information that need to be filled to
upgrade the constants in the equations derived when using this

approach.

Cautions: The procedure given above cannot be used

ot

o obtuin & basic predictor for those geologic/tectonic provinces
(1) where insufficient measured gravity data is available to
enable definition of a control region within that province or

(2) where there is insufficient variation in the mean elevation
values to enable determination of a correlation with variations

in mean gravity anomalies. The corrected average basic predictor

(Section 5.1) must be used in such cases.




4.3 BRegional Zorrection

The basic predictor contains that portion of the regional
component of mean Bouguer anomalies which is constant with resrect
to the mean elevation--mean anomaly correlation throughout a
7eoloric/tectonic province. However, the basic predictor cannot
control the sravitational effects of any long period changrs in
orustal structure, upper mantle structure, or isostatic characteris*i-z
within that ceolcgic/tectonic province. Hence, 2 regional correciion,
E;, soretimes must be added to ‘ae basic predictor in order to

describe the regional gravity anomaly fieid completely.

[

Unfortunately, trere are as rany techniques or determininsg
regional corrections as there are geologic/tectonic provinces
vhich reqiire such scorrecticns. Further, many gecloric/tectonin
rrovinces do not require any regional correcticn at ail.

Exreric rce andi judeement therefore, are indispensable elerents ~r
regional correctlon derivation.

fome indicators of situations requiring a rerionzl correctinn

are Toand
[2he= e =3

icred In Tter 9 ¢f the tasic vredictor derivation rrocedur:.

recricnal correction which eliminates a curvature in the tasic

tey
)

g
]
<

]

vredictor relationship can be determined empirically with ro
o the curve Itself. In all other cases, geophysical evidens-
rust e used to derive the regiornal correction.

The velationship most frequently used to establish a res!
zorrection ir a correla’ “on between mean Bougue: anomalles and

~rustnl thickness (depth of the liochorovivic Ciscontinulty below

z2a level ), Sush correlations have been used *o astablic

—
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regional 1orrectioné, for exemple, in the Baltic Shield, the
Caucasus, and portions of Siberia. t{

Other types of geophysical evidence which may be helpful in W
deriving regional corrections include seismic velocity, density,

and possibly heat flow data.

L.4 Local Geologic Correction

L.4.1 Discussion

The lozal geologic correction, EL, accounts for variaticns
in the Bouguer gravity anomalies caused by uncompensated mass
distributicon irregularities in local geologic structure.

Some local gravity anomaly variations are directly
related to near surface density contrasts. Consider, for example,
a basin-like depression in crystalline rocks of average density
which is filled with low density clastic sedimentary rocks. The
low density material occupying the basin contrasted with the
underlying higher density crystallines results in a localized
relative mass deficiency and, consequently, a localized gravity low.
The mechanisms involved here were explained during the discussion
of the geologic correction (Section 3.7.5).

The local correction, éL, for density contrast situations
can be determined either by empir.cal estimation or analytical
computation. Analytical computation involves ccnstruction of a

Frolorical structure "model” using published geologiral data, and

application of formulas which enable computation of ihe local I
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gravitational effects of the "model" as a function of size, shape, |
depth, and density contrast. y

Other local gravity anomaly variations, such as those '
caused by large grabens, are related to local variations in crustal
thickness and density or to locsal isostatic effects. Local
correction values for such structures can be determined either i

using isostatic models (as described in Section 3.10.4) or by

empirical estimation. :
Empirical estimation involves studies of the *

gravitaticnal effects of different types of geological structures

in areas where the gravity anomaly field is well known, identification

of the local anomaly variation signatures of each structural type,

end development of a local geologic correction table giving the

average local gravitational effects of each structural feature.

Local geclogic correction values taken from the table are adjusted

as necessary to account for unique structural variations in

different prediction areas.
Local geologic effects determined by the computational

methods are more precise--but not necessarily more accurate than

those determined by empirical estimation. In fact, some types of

local effects can be determined only by empirical estimation.

Certain types of sedimentary basins, for example, exert a positive

effect on the local gravity anomalies. In other cases, use of

analytical ccaputation in corjunction with empirical estimetion

produces the best results.
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h.h.,2 Analytical Computation |

A local geologic correction, g, » may be obtained for 4
any surface point by ine analytical computation method whenever
two conditions are satisfied.

Condition A: The local gravitational effect is
produced primarily by uncompensated density contrasts in near !
surface geological structure rather than by local crustal and

isostatic abnormalities. i

Condition B: The size, shape, depth, and density
contrasts which define the local geological structures can te
determined or estimated.

Examples of structural types which do and dc not
satisfy condition A are given in Table u-1.

Published geological maps and documents sometimes
provide detailed size, shape, and depth parameters for local
geologic structures. More often, the most probable strucutral
parameters must be developed from differing published interpretations. .

Accurate rock density data, determined by laboratcry
measurements, is rarely available. Consequently, density values
usually must be estimated using a knowledge of the rock types
iLvoived and average rock density tables such es Table 4-2. With
sufficient measured gravity data, density profiling procedures
{Jet. icton, 193G, 1940) can give good results.

Quite frequently, known rock types of a particular

local structire must be contrasted with the "basement"” rocks. The

Talie, 2.67 gm/cm3, is commonly thought to be a good estimate of
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TABLE 4-1 f

EXAMPLES OF STRUCTURES WHICH USUALLY

PRODUCE &, BY DENSITY CONTRAST .

Small to medium sized sediment filled depressions (basins)

Igneous intrusions

Igneous extrusions

Granites
L lMlinor horsts and grabens
| Some uplifts

EXAMPLES OF STRUCTURES WHICH USUALLY DO HNOT

PRODUCE 8, BY DENSITY CONTRAST

Large geosynclinal type basins
lajor horst and graben
Abnormal basins
‘ ' Abnormal uplifts

Folded mountain ranges

Recently deglaceated areas

(Compiled from several G. P. Woollard documents)
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TABLE L4-2

AVERAGE DENSITY
OF COMMON CRYETALLINE ROCK TYPES

(grams/centimeter3)

leta sediments (slate, schist, quartzite,

meta-sandstone, etc)
Acidic igneous (granite, granite gneiss, etc)
intermediate igneocus (quartz, granidiorite,
granidiorite gneiss, diorite, tonalite,
anorthosite, syenite, etc)
Basic igneous (diabase, gabbro, norite, etc)
Ultrebasic igneous (amphibolite, pyroxene, etc)
Extrusive ignecus#
Tertiary or younger

Older than Tertiary

Average density for all basement rocks

*7or basic to ultra basic extrusives, a greater density is likely.

{After Woollard, 1962; and Heiland, 1968)
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average "basement" rock density. In fact, the figure 2.67 gn/cm’
is the average density for granites as well as the average density
for all surface rocks including both the sedimentary and
crystalline types. Hence, 2.67 gm/cm3 is not truly representative
of the "basement” unless the "basement" happens to be composed of
average granites.

Woollard (1962) has determined that 2.Th gm/cm3 is
the best value to use for average 'bssement" density, and this
value is recommended for all gravity correlation work where more
specific data is lacking.

Average density contrast values can be obtained by
subtracting the average basement rock density value from the average
density value for specific rock types such as those given in
Table 4-2. The resulting density differences show that a negative
gravitational effect can be expected over acidic ignecus rocks
and Tertiary extrusives, a positive effect can be expected over
basic and ultra basic igneous rocks, and that no local effect is
expected over meta-sediments, intermediate igneous rocks, and older
extrusives.

Determination of averege density values appropriate for
sedimentary rocks is complicated by variations with age, depth of
burial, porosity, and other factors. The reader is referred to
Woollerd (1962) and Strange and Woollard (196Lka) for a detailed
discussion of seiimentary as well as crystalline rock density

determinations.
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k.4,2.1 Sedimentary Basins !

| Use of analytical computation to obtain the

local geologic correction for a sedimentary basin is best demonstrated ¢
by an example. Figure 4-2 shows a cross section of a small steep-walled

sedimentary basin which is assumed to be roughly circular in plan

) view. Assume that published geological information used to construct
the cross-sectional “model” gives the following parameters for the f
basin: {

(1) The average density of the sedimentary
rocks in the basin is 0g = 2.57 gm/cma, which is a good average

value for buried Cenezoic clastics.

-

(2) The basin is surrounded by basement rocks

whose average density is estimated to be OB = 2.7k gm/cm3.

(3) The surface extent (diameter) of the basin

is x = 150 miles = 240 km.

() The depth of the basin is 10,000 feet
= 3.0 km.

The volume occupied by the basin can be
- approximated by a vertical right circular cylinder, as shown by

the dashed lines on Figure 4-2. The local gravity anomaly effect,

f gL, of the relative mass deficiency within the sedimentary basin
then can be computed using the simple gravitational attraction
formulas for a vertical right circular cylinder. Figure 4-3
shows the formula and relations applicable for computing gL

at any point on the surface. Figure L-U shows an alternate formula

which can be used to compute g, at the surface point which lies on




e
the axis of the cylihder. Using the latter, and comparing the !

jata given in Figure 4-2 to that required by Figure L-L y

-0, =2.57 - 2.Th = = 0.17 gm/cm3

Oc = OS B

h=y=3km

d = 0 (computation point is on the upper surface of the cylinder)

r=

o X

= 120 km

Using equation (L.L-3)

5 . L
& a=[(0+3;° +120%]% = 120.0b4 knm

1.
7

r
o
n

(02 + 1202)* = 120 km

Finally, applying formula (b.4-2)

g. = (41.91) (- 0.17) (3 - 120.04 + 120) = - 21 mgal

The values of a and b computed above are very
nearly équal. Hence, the term (h ~ a + B) in equation (L.4-0) is
very nearly equel to h. IDxamination of Fizure L-b shows that this
} always will be true when the lateral extent of the cylinder is much
sreater than its thickness. Thus, for ¢ >> h, equation (k.4-)

reduces to

g, = L41.91 Ao h (L.,u-5]

>

whicl. may be recognized as the geolegic correction equation (2.7-1€).
In practice, equation (L4.4-5) gives an exc=ller:

approximation of g, at any point (not too close to the edge) -n

essentiilly horizontal structures (e.g., basins, flows, etc.) whoor

i .2teral extent is much greater than its thickness.
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FIGURE L4-2

L EXAMPLE OF SEDIMENTARY BASIN
FUKR ANALYTICAL COMPUTATICHN

OF LOCAL GEOLOGIC EFFECT

Density of sedimentary rocks = 2.55 gm/cm3

G
tn
i

Density of basement rocks = 2.T4 gm/cm3

Q
to
]

Extent (diameter) of sedimentary basin = 150 miles =z 240 km

>
i

—-;
’
[
i

Depth of sedimentary basin = 10,000 feet = 3 km
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FIGURE L-3

GRAVITATIONAL ATTRACTION

OF RIGHT CIRCULAR CYLINDER

——g———

8 = 6.66 Ao w h (4.b-1)

h in kilometers

w is the solid angle subtended at the computation point by the
circular boundary of the horizontal plane through the mid point of the

} , cylinder.

Ac in gm/cm3
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i
FIGURE 4-U

GRAVITATIONAL ATTRACTICN
J OF RIGHT CIRCULAR CYLINDER

AT A POINT ON THE AXIS OF THE CYLINDER

g = 41.91 40 (h - & + b) (4.L4=2)
* a=({(d+hn)+ r2];5 | (4.4=3)
b= (a2 + r2]% (4.b=L)

h, a, b, d, r in kilometers

Ao in gm/cm3
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It may be convenient to use formula (L.L-1)
for certain types of structures where the condition for use of {(4.L-5;
is not ret. To use equation (L.U4-1) the solid angle, w, must be
evaluated. Charts published in Nettleton (19L2) are recommended.

Values detarmined for 8 by these attraction
formulas apply to the surface points for which they are computed.

To obtain the mean local geological correcti&n for a 1° x 1° ares,
EL s compute e for several points which are evenly distributed
throughout the 1° x 1° area and average thern.

A uniform average density was as:cumed for the
rocks in the sedimentary basin of Figure 4-2. 4ctually, sedimentary
rock density usually increases as a function cr depth of burial due
to the effects of compaction. To account for this variation, the
sedimentary basin can be stratified into density layers each of which
can be approxima.ed by a right circular éylinder (or other appropr.ate
geometric figure). Then the increment of gy, generated by each layer
can be calculated, and all such incremental 8, values summed to
obtain the total effect. The slight increase in precision obtained
in this manner, however, usually is not sufficient to justify the

extra work involved for 1° x 1° mean gravity anomaly prediction

-applications. The exception to this rule is the case of basins

which are very irregular in plan view or cross section. Careful

detailed modelling of such structures may give improved e

values.
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h.h.2.2 Buried Ridge or Uplifts

The local gravity anomaly effect, gL, of buried J
ridges or anticlines can also be illustrated by examples. Figure g
4-5 is & cross section of an elongated ridge or uplift in the basement
1 rock beneath a cover of sedimentary rock. Assume that published
geological information used to construct the "model" gives the ”
following parameters:
Average density of sedimentary rock, OS = 2.57 gm/cm? i
Average density of the basement rocks, op = 2.74 gm/cm3
k Height of ridge top above the average basement surface, |
h = 5000 feet z 1.5 km
Depth of ridge top beneath the surface, d = 5000 feet = 1.} k.

- 2

Average (normal) basement depth, y = 10,000 feet : 3 ku

The volume occupied by the ridge can be
approximated by a horizontal right circular cylinder as shown t
the dashed lines in Figure 4~5. The appropriate attraction formulu

is shown in Figure L-6. Correlating the data given in Figure L-5 t- o

that required by Figure L-6

- Ac = OB - 0g ® .74 - 2.57 = + 0,17 gm/cm3

= 0.79 km

h
rE =
z

z=d +r=2.25 kn

For a computation point on the surface directly

above the axis of the cylinder
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7IGURE L-5
EXAMPLE OF A BURIED RIDGE
FOR ANALYTICAL COMPUTATION

OF LOCAL GEOLOGIC EFFECT

Density of sedimentary rocks = 2.57'gm/cm3

Q
]

S
o, = Density of basement rocks = 2.T4% gm/cm3
= Height of ridge = 5000 feet = 1.5 km
y = Normal depth of basement = 10,000 feet > 3 knm
d = depth of ridge top = 5000 feet y 1.5 km
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FIGURE 4-6

GRAVITATIONAL ATTRACTION
OF A HORIZONTAL CYLINDER

OF INFINITE EXTENT

2
g, = b0 L2 (4.4-6)
2= x2 472 | (k.k=7)

d, ry X, Z in kilometers

A3 in gm/em3
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Applying equation (k4.4-6)

_ (b1.91) (0.27) (0.75)% (2.25)
02 + 2.252

L = + 2 mgal

A=:lysis of equation (L.4-6) shows that g
decreases as the distance of the surface computation point from the
ridge axis increases, and that buried ridges or uplifts must be
very large and/or near the surface to generate an appreciable g

If the buried ridge of Figure U4-5 happens to
be located within the sedimentary basin of Figure 4-2, gL at a
su~i'ace point is computed as the combined effect of the two structures

as illustrated by TFigure L-T.

h.4,2.3 Plutons and Other Local Structures

Analytical computation of R for plutons and
other local structures is accomplished in a manner similar to that
used in the examples given previously for basins and buried ridges.
Approximate the structure by a regular geometric figure and compute

£, using the attraction formula appropriate for that figure.

L
Geometric figures useful for approximation c¢f various structures
are listed in Table 4-3. Very irreguiar structures may have to be
approximated by several contiguous figures. In the latter case,
high speed computer computations are more efficient than hand

calculations. See Beierle and Rothermel (1974) for a detailed

listing of attraction formulas and a discussion of computation

procedures.
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' In determining the EL value for 1° x 1°

areas,
smaller plutons can be ignored. Only fairly massive structures with
apnreciable density contrast contribute to é;. Table b=k lists

types of ignecus structures which do and do not affect the average

19 x ir® éi values.

L.k.2.4 Prosedure

Step 1: Determine applicability of analytical
computation method--see if both conditions A and B are satisfied.

Step 2: Construct the most probable "model"
of the local structures using published geological data. Define
size, shape, and depth parameters.

Step 3: Assign density values to local
structures and the basement rock; compute density contrasts.

Step 4: Approximate structural "models" usineg
regular gesometric figures.

Step 5: Use the gravitaticaal attraction
Tormulas appropriate for each geometric figure to compute g
values at surface points.{See Beierle and Rothermel, 197k).

Step 6: Average an even distribution of point
g, velues within each 1° x 1° area to obtair the mean EL needed tor
gravity prediction.

Step 7: Compare compute? EL with value
determined by empirical estimation and adjust as necessary.

Options: In some attraction formulas, use of
10

mean £,

an average depth for the 1° x 1° area will give a2 1° x L

directly. In such cases, reduce the computed g, in proportion tu

~~—
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FIGURE L4-7
& IXAMPLE OF BURIED RIDGE
L WITHIN A SEDIMENTARY BASIN
Dimensions of each structure are identical to those of structures
} shown in Figures 4-2 and 4-5.
} ‘ g. Tor basin - 21 mgal
~ L
for buried ridge +_ < mgal

g

}.Jl Totui er at computation point - 19 mgal
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Structures Affecting
1° ¥ 19 Mean g

Batholiths

Laccoliths

Large Lopoliths

Large Deep Seated Flutons
Thick Lxtensive Flows

Large Culderas

JA0TE: Dersity contrast must be

TABLE L-L

ISHEDONS STRUCTUREC WITH/WITHOLT 1° X 1° FRAVITY EFFECTS

Structures liot Affecting
1° x 1° Mean g,
L

Eills

I'ikes

Shallow Seated Cmall !

Thin Flows

Small Calderas

significant
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the percentage of the 1° x 1° area covered by the local structure.
Computations may be done most efficiently using programmable desk
calculators for céses involving a relatively swe)” amount .. data.
Otherwise, use of high speed computers is recommended.

Cautions: The analytical computation procedure
can be deceptively simple. Actually, a great deal of skill and
experience js needed to construct a satisfactéry "model" and to
evaluate the goodness of the computed gL values. The situation
where the anomalous mass distribution of near surface geclogic
features is partially compensated isostatiecally is particulariy
difficult t» handle. In the latter case, the computed 8 values
must be reduced in proportion.to degree of compensation which is

ostimated to exist.

L.4.3 Empirical Estimaticn

The heart of the empirical estimation method is Table k-9,
and Table L-{ which give the averagc 1° x 1° local gravity anomaly
effects which are generated by a number of geological structure
types. The table containg values originally proposed by Strange
and Woollard (196Lt) and Woollard end Streage (1966) which have been
nodified as necessary based upon several years of geophysical

gravity anomaly prediction experience.

L.U.3.1 Discussion of Local Correction Tables

Although the corrections given in Tables 4-5

and L-€ are derived primarily from empirical evidence, they alsc

iave a sound theoretical foundation.

4
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Note, for example, that the correction for

basins containing relatively old clastic sediments is smaller than

that for basins containing relatively young clastic sediments. The

reason for this is that the older sediments are usually denser than

the younger ones because of (1) greater compaction due to greater

depth of burial, (2) the longer time of being subjected to the prercire

of overlying strata, and/or (3) havine been more deeply buried in

the past than at present. The greater density of the older sedinent:

produces a smaller density contrast with the surrounding crystallines

and, hence, a smaller local geolegic correction.

o correaction is ever made for basins containin~

carbonate sediments since these rock types have average densities
very nearly equal to 2.7L gm/cm3——so that there is very little, i’
any, density contrast with the surroundine basement rock.

In similar manner, the other corrections riven
in the Tables can be shown to be compatible with the expected
density contrast and/or local isostatic imbalance situationsz wnicih
characterize each structural type.

Specific types of areas where no consisteat

local correction can be made include Paleozcic sedimentary heisinzt in

stable shield areas, such as the Illinois Basin, very large
reosynclinal basins where isostatic effects counterbalance elfects
of sediments, such as the Guif Coastal area, folded and thrust
faulted mountains such as the Montana Rockies, flood tasz21lt, suc:

v

25 the Columbia Basalt Plateau region, and steble plainz areaz cuc

as the central U. S. {Kansas, llebraska, the Dakotas, atc.).

I

fi

e i s oL
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TABLE L-5
TABLE OF LOCAL GEOLOGIC CORRECTIONS
(Part 1)
Corrections giv2n in milligals
i 1. Granites; Intrusives, Volcanism
a. Large granitic batholith (e.g., Idaho Bathclith) . =50
q b. Other granitic bodies =20
c. Ultrabasic intrusives +20)
* , d. Tertiary extrusicns =-1C
e. Trapped basic 1 ultrabasic extrusives {e.g., Snake +ho
I River Downwarp, Mid Continent High)
2. Sediment Filled Depressions (Basins;
a. Most small to medium sized basins
(1) Containing 10,000* feet or more of Cenezoic =20 %
or Cretacious clastic sediments -
(2) Containing 20,000* rzet or more of early el
* Mesozoic or Palezoic sedimen.s
(3) Containing carbonate sediments ,
-/I b. Large geosynclinal basins
(1) Containing 20,000% feet or more of Cenezoic ~17*
. clastic sediments

(2) Containing pre-Cenezoic clastic sediments
{3) Containing carbonate sediments

c. Abnormal basins--due to crustal subsidence, etc.
(3.) Cuperimposed on shield areas
(2) Intermountain (e.g., Hungarian Basin)

#*2educe correction in proportion tc lesser sediment thickness

*#se average of corrections determined from 2a and Zc ‘




TABLE L4-6

TABLE OF LOCAL GEOLOGIC CORRECTIONS
(Part 2)

Corrections given in milligals

Fault Bounded Downwarps

a. Major graben
(1) Intermountain
{2) 1ot in mountains
b. Minor graben
Uplifts
a. Horsts (fault bounded uplifts)
(1) Major, intermountain
(2) Major, not in mountains

(3) Minor

b. Abnormal uplifts--due to crustal dilation, etc.

(1) Superimposed on shield
(2) Plateaus of eustatic uplift
c. Other uplifts (not fault bounded)

Local Isostatic Imbzlance

a. Folded mountain ranges
(1) Mesozoic or younger
(2) ralezoic or older

b. Areas of recent deglaceation
(1) Major Pleistocene glaciers

(2) Minor glaciers

(3) Glaciers older than Pleistocene

+Lo

-1¢

[}
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4,4,3.2 Use of Local Correction Tables

Tables 4-5 and k-6 give the average 1° x 1°
local geologie correction EL for structures which occupy all or most
of the 1° x 1° area. Corrections given must be reduced proportionally
for structures which occupy only a portion of the 1° x 1° ares.
When two or more structures requiring a
correction occupy the same 1° x 1° area, the.applicable EL is
computed as the weighted average of the correction for each structure.
The weights depend upon the portion of the 1° x 1° area covered by
each structure.
For exemple, suppose T5% of the 1° x 1°
area incorporates 10,000 feet of C~nezoic clastic sediments in
a basin which is about 2° x 2° in extent, and that the other 25%
of the same 1° x 1° area incorporates a small horst. The correction
for the basin is 0.75 (-20) = - 15 mgal.. The correction for the
horst is 0.25 {(#+20) = + 5 mgal. The final correction for the
1° x 1° area is (-15 + 5) = - 10 mgal. '
Gravity measurements; where available, should
be used to refine the average valiues given in the table for application
to specific structures. Lacking gravity measurements, refinement
of the corrections must be based upon expecrience and geologic

intuition.

4.5 Local Elevation Correction

L.5.1 Discussion

A local elevation correction, Eﬁ, is required whenever

3° x 3° mean elevations (ME) and simple 1° x 1° mean Bouguer anomalies




v
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are used in the baéic predictor formulation. The Eé accounts for the
local gravity ancmaly =ffects of the differences between the 3° x 3°
mean elevaticns and the actual mean elevations of the 1° x 1° areas
Tor which mean anomalies are being predicted.

lio local elevation correction is needed when 1° x 1°

neen elevations (ODM) are used in the basic predictor formulation.

In view of the local Bouguer anomaly relation (3.7-22)

= I
(AgB)P = \z\gB)’Q

it may seem surprising that a local elevation correction is require:?

)

© and 3° x 3° mean

to account for the difference between the 1° x 1
elevation level. However, equation (3.7-22) applies to terrain
corrected Bouszuer anomalies whereas non-terrain corrected Bouguer
anomalies are generally used in NOGAP predirtion. The equivalent
of (3.7-22) for non-terrain corrected Bauguer anomglies is obtained
hr inserting equations (3.7-10) and (3.7-12) into equation (3.6-2))

which rives the relation

) o NN
\_I_IB)P (LgB,Q TCp, + TCQ (h.5-1)

I¢ P is interpreted as the 1° x 1° mean value and -
as the 3° x 3° mean value, then the local correction, £ necessar;

to convert a rean RBouguer anomaly predicted with a 3° x 3° meen

=levation tc 2 value compatible with the 1° x 1° mean elevatien ic

m o
g.,= - TC_ + TC (L.5-)
°E P Q
where
T3 = averare terrain correction for 1° x 1° mean anorali~s

R

|
|
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TCQ = average terrain correction value for 3° x 3° mean anomalies
Values determined by Voss (1972b) for TCp end TC,
are
TCP = 0.021 mgal/meter
TCQ = 0.008 ngzal/meter
Hence,
EE = - 0.013 6h . (k.5-3)
where
sh = hP - hQ = 0D - ME
% Extensive testing has proven that equation (4.5-3)
works well in most areas.
L.5.2 Procedure
Use equation (L.5-3) to determine the local correction
whenever the basic predictor is formulated in terms of 3° x 3° mean
elevations (ME) and simple 1° x 1° mean ﬁouguer anomalies.
) Omit the local elevation correction whenever the basic
} predictor is formulated in terms of 1¢ x 1° mean elevations (ODM). .

L. € Evaluation of NOGAP Predictions

t¢.6.1 Evaluation Formulas

Using fundemental principles of error theory it can be

shown that the standard errors of NOGAP prediction are given by

1
2 M7 2 2 2% i o
L (eB preg  teltes ) (L.6-1)
E. = (E2_ + 0. 2 Y L, G2
Eg (E 5 0.01 e A ( )

wher 111 E and e values are standard errors in milligals except for

T
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2 which is a standard ecror in meters. Specifically,

EB = error of 1° x 1° mean Bouguer anomaly predicted by equation 1

(L.1-1) !

E, = error of 1° x 1° mean free air anomaly predicted by equation .

(k.1-2) :

% b e, = error of basic predictor )
BP /

ép = error of regional correction o

r e = error of local geologic correction :
ey = error of local elevation correction [

e = error of 1° x 1° mean elevation (ODM)

The error of basic predictor, e P? is given by

B

-y
m

e.. = [(H-eB)2 + (8 eﬁ')Z]lﬁ (4.6-3)

BP R

where
h = mean elevation used in basic predictor, equation (k.2-1) )
eB = error in BR constant o basic pfedictor equation found

» ~ using the error propagation formula (D-11) given in Append.x L

B, = regression slope constant used in bhasic predictor equation .
e = error of mean elevetion value used in basic predictor equation

It usually can be assumed in continental areas that the
measured gravity data used to derive the basic predictor is error-freoe.

<

In the rare situations where this is not the case, add the term eAW
-~

under the radical in equation (4.6-3), where © e is the error of .he ]

measured gravity data.

The errors, e_ and e , are estimates of the nccuracy of

R I*

the corrections, E. and E , rcspeciively., Where no velues for —;
R L €

and EL can be determined, then e_ and e

8 R L represent estimates of tie

—

. & sl = ....----IllllllllllllIiIIIIlIF]llllllllllllllllill‘
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errors incurred by nbt accounting for local and regional gravity ]
anomaly variations in the prediction. J
In estimating values for eR and eL, it should be noted ‘
that the point scatter in the basic predictor derivation plots is
caused primarily by the combined effects of g and e and, therefore,
can be used to determine 2 first approximation of the average i
and e. in the prediction ares. '

3 L
|

The error in local elevation correction is given by

effects of e

1
= 2 2 ¢! -
er = 0.01 (eH + e ME) (L.6-L)

The ~rror tern eps is omitted when the correction E}

is not used in the NOGAP prediction.

L.6.2 Proven Reliability of NOGAP Prediction

It is very difficult to establish precise reliability
data for NOGAP prediction because the method generally is used in
regions which contain very little if any measured gravity data for
comparison with the predicted values. However., the overall s
reliability of the method can be proven by citing three lines of
evidence.

Several years ago a number of NOGAP geophysical
predictions were made in regions of FEurasia and North America
where there was, at the time, very limited amounts of measured
sravity date. Some time after the predictions were completed,
megsured data which coverzd these prediction areas quite well was

s.cquired by the DOD Gravity Library. Using the measured gravity

data, 1° x 1° mean anomalies were comjuted by conventional methods
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Ak

and then compared to the 1° x 1° riean values predicted by the I0GA:
method. The standard deviation between "measured" and gecphysicaily
predicted 1° x 1° mean anomalies are shown in Table 4-T7.
Additionally, & test project was conducted in the
' Europesn area. NOGA? geophysical predictions were made using a
very small, poorly :istributed sampling of the measured gravity
data which exists in the region. The predicted 1° x 1° mean
vaiues were compared with "measured" values ~omputed using all
measured data. The results are shown in Table L-8.
& Finally. Strange and Woollard (196Lb) made geophysical
predictions in the United States using 2 NOGAP-type method. The
standard error of these predictions was + 13 mgal.
It is apparent from the preceding that NOGAP predictions

have an accuracy range of 5 to 20 mgal. Most modern predictions

fall into a 9 to 15 mgal accuracy range. These figures are not
® bad considering the minimum input of measured gravity data for
most HOGAP predictions. With adequate amounts of measured gravity .

data, of course, NOGAP accuracies of 1-2 mgal can be attained

’ easily.

o —




TABLE k-7

STANDARD ERRURS OF GEOPHYSICALLY

PREDICTED 1° X 1° MEAH ANOMALIES

RANGE OF
PREDICTED VALUES STANDARD
NUMBER OF g ERROR
IS o = ¥
AREA 1° X 1° AREAS (mgal) (mgal)
{lORTH AMERICA 29k +52 to =61 + 15
TRASIA 159 +128 to - 100 + 9
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TABL® L4-8 . “

I

._“

RELIABILITY OF NOGAP PREDICTIONS f

3 IN WESTERN EURCPE !

/

TYPE AREA ERROR RANGE ,

(mgal) |

Small Basins ~10 ;
& Large Basins ~15
{ Basement exposures 5-1¢
Geosynclinal mountains 10-20
Graben and Plateaus 5-10
Coastal lowlands ~10

1
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5. MODIFICATIONS AND VARIATIONS - NOGAP PREDICTIOR !

5.1 Corrected Average Basic Predictor

Whenever possible, the NOGAP basic predictor is derived by .

regression analysis in a control region for application in the &

prediction region of the same geologic/tectonic province. This
1

approach fails whenever the amount or distribution of measured

gravity data within a geologic/tectonic province is insufficient !
to enable definition of a control region for that province. In
such cases, a corrected average basic predictor is needed to enable
1° x 1° mean anomaly prediction by the NOGAP method.

The (uncorrected) average basic predictor function recommended

for most applications is

BPA = - 0.0894 ME, (5.1-1)
vwhere
BPA = average basic predictor
ME. = weighted 3° x 3° mean elevation, as defined by Figure b-1,

in meters
Equation (5.1-1) is determined as the mean of the empirically
derived equation (5.1-11) and the theoretically derived equation
(5.1-12). Other average basic predictor functions haviig more limited
apriication can be derived by enpirical means.
Two special corrections must be added to the average basic
predictor to obtain a basic predictuor value which is suitable for

use in the fundamental NOGAP prediction formula (4.1-1). Thus,

DC

BP = BPA + gic + g (5.1-2)
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where

BP

basic predictor for use in (Y4.1-1)

BPA = average basic predictor from (5.1-1)

81c isostatic-crustal correction

ébc gravitetional effect of distant compensation
The value given by equation (5.1-2) is the corrected average

basic predirtor.

5.1.1 Empirically Derived Aversge Basic Predictors

It has veen establi hed that variations in thz Bouguer
u gravity anomaly &are tantamount to changes in the amount of compensati-n
present, equation (3.8-11). Using Airy isostatic hypothesis, these
changes in compensation and, hence, Bouguer anomaly can be internre:ei

in terms of variations in crustal thickness, equation (3.10-31).

Airy isostatic theory also demands variations in crustal thickness
to accompany variations in topographic elevation, equation (3.10-1€.
Seismic evidence and gravitational analysis (Woollard, 1959, 196€,
1968c, 1969b; Strange and Woollard, 196L; Demnitskaya, 1959) show
that, on an average worldwide basis, the relations observed

befween elevation, crustal thickness, and Bouguer anomaly are quite
close to those predicted by Airy isostatic theory. In additinn,
many departures from une Airy theory predictions can be ascrited

tc v ¢ :ions in the density of the crust and mantle zand to sone

regional isostatic imbalance. These average worldwide relationshi;:z

provide an excellient foundation for development of average tasic

predictor functions.




Demnitskaya (1959) has compiled worliide maps of
crustal thickness and compared these date with worldwide Bouguer
anomaly and elevation data. Using least squares solution, she
dctermined that the following expressions represent the average

relationship between crustal thickness and elevation or Bouguer anomzly.

i H =35 (1 - tanh 0.0037 4g) (5.1-3)
H = 33 tanh (0.38 h - 0.15) + 38 (5.1-4)
where
H = crustal thickness in kilometers
AgB = Bouguer gravity aromaly in milligals
h = elevation in kilometers
Equating the two above expressions and solving for the

Beuguer sasnomaly gives

bgp = - 270.27 tanh'1 [0.94286 tanh (0.38 h - 0.18) + 0.00857] (5.1-5:

To use equation (5.1-5) as an average basic predictor,
replace AgB with BPA and h with the appropriate mean elevation in
kilometers.

When used as an average basic predictor, egnstion (5.1-7)
gives favoratle results in the Eurasian area but fails in lJorth
America (Durbin, 1962). This result suggests, logically, that
Demnitskaya's measured data was heavily concentrated in the
curasian area--giving heavier weight to this area in the least
squares solution.

Woollard (1959) performed & similar worldwide analysis
of crustal thickress, elevation, and Bouguer anomaly data {rom which

the followine equations were derived by Durbin (1961).
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bgy = 0.115 (H + 94.1)2 - Lbk.k (5.1-6)

H = (~ 1605.358 h + 12392.620);5 - 1k3.322 (5.1-7)
which, when the second is substiti.i2 into the first gives, after

some simplification

bgy = h (2.643 h - 103) (5.1-8)

Equation (5.1-8), which can be converted into an average
basic predictor function in a manner similar to (5.1-5), gives
good results in North America but fails in Eurasia (Turbin, 1962).

A linear equation with quite general application can
be derived from relations published by Wecollard (19€2) based upon

mors extensive data than was used in 1959.

H = 33.4 - 0.085 bgy (5.1-9)

H=33.2+7.5h : (5.1-10)
Eanating the two above equations and solving for AgB
gives

bgy = - 88.2 h (5.1-11)

where h is in kilometers and a small constant term has been dropped.

Converting to an average basic predictor gives

BPA = - 0.0882 h (5.1-12)
where h is an appropriate mean elevation value in meters.
Being worldwide average relations equations (5.1-5),
(5.1-8), and (5.1-12) must represent the elevation-Bouguer anomaly

correlation for the worldwide average isostatic condition. On a

worldwide basis, isostatic compensation is complete.




198

5.1.2 A Theoretically Derived Average Basic Predictor

To derive an average basic predictor theoretically,

assume that complete isostatic equilibrium exists and compute the
Bouguer anomaly which corresponds to this condition as a function of
mean elevation. An isostatic model can be set up for this purpose
using Airy-Heiskanen isostatic theory, Figure 5-1. A radius of 166 km
is chosen for the model since tﬁis radius will enclose approximately
a 3° x 3° area--the smallest area likely to be in complete isostatic
equilibrium (Woollard, 1962). (Hence, the h term in equation (5.1-11)
& must also be a 3° x 3° mean elevation).

3 Approximate the compensating root of the Airy-Heiskanen
isostatic model by a vertical right circular cylinder, Figure 5-2,

and compute the gravitational sttraction of the compensation using

formula (4.4%-2), (4.4-3), and (4.h-k), Figure b-4. The result is

the Bouguer anomaly corresponding to & condition of isostatic

equilibrium for a 3° x 3° mean elevation of 1 km.

a=[(30 + L4.45)2 + 1662]1i = 169.537 km :
b= (302 + 1662)!i = 168.689 km
Ao = 2.67 - 3.2T = - 0.6 gm/em3

AgB = (b1.91) (- 0.6) (4.bs .. 169.537 + 168.689) = - 90.6 mgal/km

n=1

Gerieralizing this result for any elevation gives tho

average basic predictor

BPA = - 0.0906 h (5.1-13)

! where h = 3° x 3° mezn elevation in meters, essentially ME1

h (Figure b4-1).
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5.1.3 The Need for Corrections to Average Bacic Predictors

The regional comporent of the Bouguer ancmaly, coutrolied

by the basic predictor, is generated by both local and distant

distributions of the compeasating masses as well as by density anomzlies
in the crust and upper mantle. Yet the theoretical derivation of
: the average basic predictor assumes that isostatic compensation is
complete (that is, there -re no uncompensated regional density
anomalies) and takes into account only that compensation which is
within a 166 kilometer radius. Also, an assumption that compensation
is achieved by the Airy-Heiskanen mechan:sm was made in the derivaticn.
L The empirically derived average basic predictors are
alsc tied to the Airy isostatic model and represent a condition of
complete isostatic equilibrium. Alsoc, the random effects of distant

compensation must be averaged out. The close correspondaence between

the empirical equation (5.1-12) and the theoretical equaticn (5.1-17)
is further evidence that the empirical and theoretical models, in
fact, must have very similar properties.
} ) Although the average basic predictor certainly is quite .
accurate as an cxpression representing worldwide average conditiocns,
it is logical that some corrections are necessary to convert the aver--e
basic predictor to a form which is suitable for use in the NOGAF
prediction formula. This is true because, in general, the geophysical
properties of any given prediction area will not correspond exacztly
to the worldwide average properties.

A good understanding of how well the average basic

h predictor will approximate the actual mear Bouguer anomaly--mean

elevation relationship within a given region can be obtained from
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FIGURE 5-~1

AIRY-HEISKANEN ISOSTATIC MODEL

FOR /#VERAGE BASIC PREDICTOR DERIVATION
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FIGURE 5-2

* MODELLING OF COMPENSATION

v

USING VERTICAL RIGHT CIRCULAR CYLINDER

AND AIRY-HEISKANEN ISOSTASY

HS = 30 km
AR = 4,45 km
r = 166 km
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FIGURE 5-3

AVERAGE BASIC PREDICTOR
SUPERIMPOSED ON OBSERVED RELATIONS

OF 3° X 3° MEAN ELEVATIONS AND BOUGUER ANOMALIES

Basic figure from Woollard (1969b)
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OBSERVED RELATIONS OF 3°x3° MEAN
ELEVATIONS AND BOUGUER ANOMALIES
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Figure 5-3. This figure was obtained by superimposing the line
generated by equation (5.1-1) onto Figu.e 1 of Woollard (1969b),
which shows observed relations of 3° x 3° mean elevations and Bouguer
anomalies for 18 continental regions throughout the world, The
comparison shows that (1) use of a basic predictor specifically
determined for aprlication within a given region is always

preferable and (2) some corrections are essential if the average

basic predictor is to give satisfactory results for many regions.

5.1.4 Distant Compensation Correction

The distan* compensation correction accounts for the
gravitational effects of the compensating masses which lie outside
of the 166 kilometer radius included in the theoretical derivation
of the average basic predictor. This correction can be obtained
easily from maps by Karki et al. (1961)._ These maps are designel
to provide a value for use in the isostatic correction, gr» where
the effect of compensation is positive. For Bouguer anomaly

prediction, however, the effect of compensation is negative.

Therefore,
8¢ = - Eprg Conel
where
Ebc = Bouguer gravity effect of distant compensation for use in
equation (5.1-2)
gDTC = Isostatiec gravity effect of distant topograpny and its

compensation read from maps by Karki et al. (1961).




5.1.5 Isostatic-Crustal Correction

The isostatic-crustal correction accounts for (1) regional
departures from isostatic balance, (2) the existence of crustal and
upper mantle density distributions other than those predicted by
Airy isostatic models, and (3) very long pericd (global) variations
in the gravity anomaly field caused by deep seated mass perturbations.

As was true in the case of the regional correction,
there are nearly as many approaches for developing isostatic-crustal
corrections as there are geoiogic/tectonic provinces which require
such corrections. The evidence and methods which can be used tend
to follow a limited number of patterns some of which are discussed
in the following paragraphs. Extended discussions of other types of
regionality factors which must be considered in developing isostatic-
crustal corrections are included in Woollard (1968b, 1969a).

Evidence for regional departures from isostatic balance
includes rapid uplift or subsidence of the crust, recent glaciation
or deglaciation, rapid erosion, etc. Regions suspected of being out
of isostatic balance should be compared with other regions having
similar characteristics and ample measured gravity data. An
isostatic-crustal correction can be derived for the latter and
applied to the former.

Strange and Woollard (1964a) have derived an isostatic-
crustal correction for two types of regions where crustal and upper
mantle density distributions differ from those predicted by the Airy

isostatic model. These are (1) regions where both mean crustal

seismic velocity (and, hence, dersity) and upper mantle seismic
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velocity (demsity) are abnormally high and the crust is thicker

than predicted by Airy theory (example: Northern Great Plains), and

(2) regicns where both mean crustal and upper mantle velocity are
abnormally low and the crust is thinner than predicted by Airy

theory (example: Southern Basin ard Range province). These regions
must not be long and narrow. Using empirical relations between
crustal thickness and regional gravity anomalies, Strange and Woolla-d
have developed an isostatic-crustal correction determnination

procedure for such regions. The procedure is this:

u Step 1: Determine actual crustal thickness from
published interpretations of seismic velocity data.
Step 2: Determine the crustal thickness predicted by

Airy theory from Figure II-9 of Strange und Woollard (196La).

Step 3: Enter actual minus predicted crustal thickness
into Figure II-11 of Strange and Woollard (196Lka) and read the

isostatic-crustal correction.

* o A goou approximation of the very long period (global)
variations in the gravity anomaly field can be obtained as the

. difference between the global gravity field value computed from the
lov degree sphericel harmonics (derived by satellite perturbation
analysis) and the value given by the theoretical gravity formula
(Strange and Woolleosd, 196ha).

Any measured gravity data which erxists in the prediction

region can be used as a rough check of the regional component of

the Bouguer gravity prediction given by the corrected average basic
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predictor. Of course, local effects must be removed from the measuren
iata before it is compared to the value given by the corrected
average basic prédictor.

Careful deductive reasoning combined with considersble
skill and judgement is necessary to enahle development of accurate
r2lues for the isostatic-crustal correction for prediction areas

which contain no messured gravity dal -.

5.1.6 Evaluation of the Correct:d Average Basic Predictor

The standavd error of the corrected average basic
predictcr computed by eguations (5.1-2) and (5.1-1) is given by

i

e_. = [(0.09 e;;)2 + e? (5.1-15)

BF KG
wiere
eEF = error of corrected average basic predictor in milligals
ey = error ~f the mean elevation value used in the average basiv
predictor equation (5.1-1) in meters.
2, T error of the isostatic-crustal correction in millizals
The value obtained by (5.1-15) is to be used in equatiorn
(4.6-2) for ICGAP prediction evaluation.
Zince the average basic predictor is quite accurate as
an expression representing the worldwide average relationship
between mean Bouguer anomalies and mean elevations, there is no ternm

in {5.1-15) involving the slope constant error, e Likewise, the

iistant compensation correction is "correct” by definition, and,

hence not an error factor in (5.1-15).
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The error, » is an estimate of the accuracy of the

°1c
correction, EIC' Where no value for EIC can be determined, then

e, represents the error incurred by not accounting for actual

IC
regional isostatic and crustal conditions.

Results of a test project in Europe provide some
guidance for the expected reliability of NOGAP predictions made

using the corrected average basic predictor. Details are given in

Table 5-1.

5.2 Basic Predict- 7 Multiple Regression

Comparatively little research has been completed to determine the
nature of the multiple (combined) relationships between Bouguer gravity,
mean elevation, and other geophysical parameters. Nonethelcese, it

should be possible to define a basic predictor of the form

BPM = a +bx +cy +dz + . . . (5.2-1)
where

BPM = multiple basic predictor

8, by c,dy, . . . multiple regression constants

Xy ¥s Zy o o o geophysical variables such as meen elevation,
crustal thickness, depth to crystalline
bvasement, etc.

Based upon results of research conducted to date, multiple basic
predictors such as (5.2-1) appear to apply to regions which are
comparitively localized in extent. Also, the multiple basic

predictors incorporate part or all the local and regional correction

terms as well. A study by Vincent and Strange (1970) indicates that

the multiple regression prediction can give excellent results.
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TABLE 5-1

RELIABILITY OF NOGAP PREDICTIONS
USING CORRECTED AVERAGE BASIC PREDICTORS

IN WESTERN EUROPE

TYPE AREA ERROR RANGE

(mgal)
Small Basins ~10
Large Basins 15-25
Basement Exposures 5-20
Geosynclinal Mountains 15-25
Grabens and Flateaus 10-15
Coastal Lowlands ~10
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5.3 Normal Gravity Anomaly Prediction-Free Air Version (GAPFREE)

Basic predictor functions are generally determined in terms
of mean Bouguer gravity anomaly--mean elevation relationships
because of the strong, well-defined correlation which usually
exists between these two parameters. However, a basic predictor
function also can be derived in terms of mean free air anomaly--mean
elevation relationships. The major difficulty with the latter
approach is that the free air linear basic predirtor relation is
frequently very nearly parallel to the elevation axis which results
in an ill~-defined basic predictor equation, for example, equation
Ju (3.6-33).

Gravity anomaly prediction using a free air basic prediction
(GAPFREE) is similar in form to NOGAP prediction, and theoretically

at least should give identical results whenevei the free air basic

predictor is well defined. The fundamental prediction equation

is
N g = + g + o = = 5,3
where
/
] / ZE% = predicted 1° x 1° mean free .ir anomaly
BPF = free air basic predictor
é% = regional correction
é; = local correction
E%F = locnl free air elevation correction

The predicted 1° x 1° mean Bouguer anomaly is obtained from

o

the predicted 1° x 1° mean free air anomaly by use of equation

(3.7-14)

- ZEB = ZEF - 0.1119 h (5.3-2)
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where

AgB

h = 1° x 1° mean elevation

predicted 1° x 1° mean Bouguer anomaly

The free air basic predictor used for GAPFREY predicticn is the
equation of the linear regression between 1° x 1° mean free air anomaly

values and the corresponding mean elevation values.

BPF = a + Bh (5.3-3)

BPF = free air basic predictor

regression constants

R
-
™=

1]

mean elevation

=
]

The procedure for free air basic predictor derivation e
similar to those outlined for the standard NOGAP basic predictor,

° mean elevations may be used.

and eitner 1° x 1° or 3° x 3
The regional and local geologlc corrections are obtained in
the same manner as for standard HOGAP prediction.
The local free air elevation zorrection, used only when 3° » 3

mean elevations are involved in the free air basic predictor, is

obtained from equacion (3.6-25)

(AgF)P g (AgF)Q + 0.1119 &h - TCp + TCQ (5.3-L)

B (C

where P is irterpreted as the 1° x 1° mean value and ¢ as the 3° x 7

mean value. Thus,

Bgp = 0-1119 6h - TC, + TCQ, (5.2-5)

The value of (- TCp + TCQ) is given by (4.5-3) to be - 0.013 @i

‘herefore,
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8pp = 0.099 6h
where
‘ sh = hP - hQ = ODM - ME
Evaluation of GAPFRFE prediction is similar to evaluation of

NOGAP prediction.

v
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1

6. GRAVITY DENSIFICATION AWND EXTENSLON METACD {ZRADT)

C

6.1 Discussion

In regions where a limited amount of measured gravity data is
available, conventional averaging methods often do not yield accurate
1° x 1° mean anomalies. When geologic structure is considered in the
prediction process, however, the resulting 1° x 1° mean can be quite
accurate (Scheibe, 1965). The Gravity Densification and Extension
(GRADE) method is the gravity correlation prediction procedure most
often used to incorporate structural considerations into 1° x 1°
‘ mean gravity anomaly predictions in continental regions of limited
! measured gravity data availability.

The GRADE method us>s gravity correlations to densify and exte.d
the known gravity field by interpolation. The mean anomalies are

predicted using both the measured and interpolated data.

t Input data required for GRADE prediction is the same as for HOGAP
r . prediction plus an average of from two to ten gravity measurements
per 1° x 1° area within the prediction region.

}f In GRADE prediction, the locations of all available gravity
measuremerts are plotted on a map base of suitable scale. Then the

‘ Bouguer gravity anomaly values for all plotted points are graphically
compared with the corresponding values of various types of numerical
reophysical or geological data which are known continuously throughout
the prediction region. All correlations are noted and the equations
which express the interrelationships between correlatel data are
ccreloped. These equations are used to interpolete Bouguer anomaly

values for an even distribution of points within each 1° x 1° area.

—_

L |
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~..L measured and interpolated Bouguer anomaly values are annotated on
e plct, and the combined field is contoured using geologic/tectonic

structure maps as additional control. The final mean 1° x 1°

mean
anomaly values are read from the completed contour charts.

The applicability of correlations found is usually limited to =
single geologic/tectonic province and, occasionally, to individual
reologic formations. For this reason, Bouguer ancmaly interpolations
zre extended only into regions which are structurally homogeneous with
the region in which the correlations being used vere determined. 7Thi:
property is =actually a strength of the method because each
<sravitationally significant local structural variation iz taken into
azcount.

In addition, the measured gravity dat~ used in the method
automatically controls much of the regional component of the gravity
anomaly field. EHence, 3RADT nredictions are well controlled both
locally and regionally.

Come examples of the tvpes of data which can be used to establich

~orrelatisns for GRALL interpolation are 7iven in Table 6-1.

N

£.. DIrocedure

Gtep 1 Obtain plots snowing the locations of all gravity
measurements available within the prediction region. £ scale cr
1:1,000,MC is generally used for 1° x 1° prediction. Annotate
roucuer anomaly values at measurement sites.

Ctep 2: Obtain all numerical geological and geophysical data

2vailable in the prediction region. Sources of such data are listed

‘n Tahle A=1. If necessary, construct contour maps of each type of
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TABLE 6-1

SOME EXAMFLES OF NUMERTICAL GECLOGIC AND GEOPHYZICAL

DATA WHICH CAd BE USED TO LESTABLISH

CORRFLATIONS FOR GRADE INTERPOLATION

DATA SOURCES
Cristal Thickness Crustal Maps, Frofiles (geizcnic,
gravimetric)
ZCepth to liohorovicic Crustal Maps, Profiles (seismic,
liscontinuity gravimetric)
‘ vepth to Intra-Crustal Crustal Maps (seismic,
! Mscontinuities rravimetric)
hickness of Cedimentary Tectonic Maps
CeCKS
Jorth Co Bazement Tectonic Maps
Jeismiz wWave Velocity Seismic Data
“rustal or sear Surface Seismic Data, encity linps,
Jencity Variations Crustal [rofiles
-
iareat §on Teoposraphic Maps
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«

Gata to obtain a representation showing how “he data varies in value
throughout the predicticn region. Annotate (or tabulate) values for
each type of data, read from the contour maps, at the gravity measurement
sites on the plots made in Step 1,

Step 3: Subdivide the prediction rezion into geologic/tectonic
provinces using published geologic and tectonic maps and documents.

Step 4: For each geologic/tectonic province, make plots (graphs)
of Bouguer anomaly values against the values of the various types of
numerical geologicel and geophysical data at the gravity measurement
sites.

Step 5: Examinz each plot. If a single regression line provides
a good linear fit to the plotted points proceed to Step 8. Otherwise
continue with Step 6.

Step 6: Re-examine the geologic/tectonic province boundaries
determined in Step 3. Ad}'.stment of thege boundaries and/or definition
of additional provinces maey help achieve good lineaf relationshirs.
Conversely, it may be possible to combine two or more provinces which
have the same relationships.

Step 7: Consider subdivision of plots into high, intermediate,
and low elevation regions, especially when the original plot shows
linear segments Joined by directional discontinuities.

Step 8: Select the most consistent plot (smallest point scatter)
to represent each geologic/tectoaic province. Compute linear ,
regression coefficients using a least squares solution (Appendix D).

Step 9: Use the correlation formulas determined in Step 8 to

interpolate Bouguer gravity anomaly values at an even distribution of

points within the prediction region. Where the Bouguer anomaly gradient
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is small, a total of 5 to 10 measured and interpolated values per

1° x 1° area should be sufficient. With a larger gradient, 20 or

more points per 1° x 1° area may be required. Annotate the additional
Bouguer anomaly values on the plots made in Step 1.
Step 10: Contour the densified and extended Bouguer gravity
! anomaly field on the final annotated plots. Use local variations

in geological structure as additional control in constructing the

contours.

H Step 11: FKead the final 1° x 1° mean Bouguer anomaly values
{rom the completed contour plots.

‘ Step 12: Compute the final 1° x 1° mean free air anomaly

using equation (4.1-2).

Options: Experienced people generally prefer to use programmable

desk calculators or high speed computers to accomplish Steps b
through 9. Using the plots as described, however, is an aid
both in understanding the processes involved and in defining

vhere the data could have alternate interpretations.

/
’ / 6.3 Crustal Parameter Variations

} A stronger correlation sometimes exists between the numerical
geophysical data and the two geophysical parameters, mean crustal
density and crustal root increiient, than between the geophysicet
date and the Bouguer gravity anomaly data. Consequently, it is
sometimes advantageous to use these two crustal parameters in lieu

of the Bouguer gravity anomaly in GRADE prediction.
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Exnressions for thio two crustal parameters are obtained using
niry-¥Woollard isostatic theory. The basic relationships are given

vy equations (3.10-20) and (3.10-31) which may be written in the

form
ch+(o,-0.)H
AR = ~< OIS S (6.3-1)
g -0
m C
= - 2 - R o« =2
AgB mk (om OC) AR (6.3-2)

where all symbols are defined in section 3.10.
Colve (6.3-2) for AR, equate to (6.3-1) and solve the resulting

expression for OC to obtain

21k o K, - Lg
s 55 = (6.3-3)
@ ok (HS + h)

Eruations (6.3-1) and (5.3-3) are used to obtain values for

the two crustal parameters, o, and AR, at each gravity measurement

C
site. These parameters are plotted individually against the numerical
geophysical deta, and the best correlations are used to interpolate
additional %% and AR values at an even distribution of points within
the prediction regicn. Then equation (6.3-2) is used to convert the

internclated crustal parameters to interpolated Bouguer anomaly

values which are then contoured, as usual.

£.4 Mountain Modification

"“he standard GRADE method sometimes gives inadequaie results
in ruzged mountainous areas where the available measured gravity
lata is not distributed well enough to represent rapid structural

and tovographic changes. The mountain modification of the GPADL meth” .

often enables more reliable predictions to be made in such aress.
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Pairs of measurement sites are selected such that the lines '
connecting the pairs cross the structural trends at nearly right
angles. The Bouguer anomalies or crustal parameters are plotted
against the numerical geophysical data at the end pcints (measurement
sites) of each line. Then a linear interpolation is used to obteain
Bouguer anomaly or parameter values at equal intervals along each
line. The measured and interpolated values are contoured and the

means read in the usual manner.

6.5 Evaluatior of GRADE Prediction

6$.5.1 Evaluastion Formulas

Considering the fundamental principles of error theory,

the standard error of GRADE prediction is given by

°3
EB = (m . 9-)15 (6.)'1)
2
B, = (EZB + 0.01 eZH)% (6.5-2)

where E and e values are standard errors in milligals except eH

which is a standard error in meters. Specifically,

EB = error of 1° x 1° mean Bouguer anomaly predicted by GRADE
procedures

EF = error of 1° x 1° mean free air anomaly predicted by equation
{(4.1-2)

e; = error of interpolated Bouguer anomalies
e, = error of 1° x 1° mean elevation (ODM)

n = number of measured gravity values in the 1° x 1° area

n = number of interp.lated gravity values in the 1° x 1° area
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The error of the interpolated Bouguer anomalies 1s given

by
e, = [(Pe,)? + (8e,)?]* (6.5-3)
il B P
vhere
P = average value of the numerical geophysical data in the
correlaticn used for the 1° x 1° area
e = error of the numerice! geophysical data used
? = slope constant of the linear corrc’ation equation used for
interpolaticn |
e = error of the slope constant given by the error propagation
formula {Appendix D)
When crustal parameters are used, compute an error for

each parameter using equation (6.5-3)--this gives e g for the root

A

increment and ec for mean crustal density. Then

-0,) e R}Z + (AR e )21 (c.5=k)

K C C

S wiheve AR and o, are average values for the 1° x 1° area.
For the mountain modification, use m + n/b in the

denominator of (6.5-1).

6.5.2 Test Reiiability of GRADE Predictions

A test project to evaluate GRADE prediction reliability
has been conducted in the Furopean area. Values predicted using the
GRADE method and variable amounts of measured data were compared
with "measured" values computed using all measured gravity data.

The results are shown in Table 6--2.




-

TABLE 6-2

RELIABILITY OF GRADE PREDICTIONS

IN WESTERN EUROPE

Normal Areas

223

Average Number Standard
Measurements Error Range Error
per 1° x 1° (mgal) (mgal)
0=k 5-9 10-1L
2 70% 20% 10% + 7
5 5% 25% - £ 5
10 100% = e + 2
Rugged Areas--Mountain Modification
Average Number Standard
Measurements Error Range Error
_per 1°0¢ 0° (mgal) (mgal)
0= 5-9 10-1k > 15
3 35% | 15% 25% 25% + 15
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T. FEXTENDED GRAVITY A!IOMALY PREDICTION METHOD (EXGAP)

7.1 Discussion
The Extended Gravity Anomaly Prediction Method (EXGAP) was
derived originally as an extension of the NOGAP method. The
t original version, as described in Wilcox et al. (1972) and Wilcox
(1968) was somewhat awkward in its expression and recommended usage.
The method is presented here in a revised and more adequate form.
The EXGAF method is useful for 1° x 1° areas which contain only

cne or two gravity measurements and for which a valid IIOGAP basic

predictor equation has been determined. It is based on the assumpticn

g

that the regional inverse linear relationship between point Bouguer

o]

anomalies and elevations within the 1° x 1° area is parallel to the

recional mean Bouguer anomaly--mean elevation relationship expressed

by the basic predictor. In general, this assumption is sufficiently

valid for 1° x 1° anomaly predictionms.

~ The relations involved are shown graphically in Figure 7-1.
From this figure, it is evident that ,
/
» —_ . -
bgy = (8gy - g ) - 8 (b h) (7.1-1)
. whare

1° x 1° mean Bouguer anomaly

=

(e
J

1

h =17 x 1° mean elevation
g, = Bouguer anomaly computed at che measurement site
h = elevation of the measurement site

z. = local veologic correction at the measuremeut siie

Il

= slope constant of the NOGAP basic predictor

o
i
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Equation (7.1-1) is the EXGAP prediction formula. All parameters
required by this formula are "known'" except for the local geologic
correction, 8 which must be determined by the analytical computation
method described in Section 4.4.2. (Empirical estimation cannot be
used for a gy, value which applies to a particular measurement site).
Hence, application of the EXGAP method is limited to areas where
local geological effects can be computed by the analytical mefhod.

Results are always improved when more than one gravity measurement
is available within the 1° x 1° area for which a prediction is desired.
In such cases, apply equation (7.1-1) independently for each
measurement and take an average.

The predicted free air anomnl!y is obtained using equation (L.1-2).

T.2 Evaluation of EXGAP Prediction

The standard error of EXGAP prediction is given by

S 1%
T 2 . 12 ) S L
By [e ba lee S {(h - h) es} + (8 eh) + (B eh) ] (7.2-1)
1.

- a2 2172 -
Eg [LB + 0.01 e I (7.2-2)

where all E and e values are standard errors. OSpecifically,

E_ = error of 1° x 1° mean Bouguer anomaly (mgal) predicted by

B
equation (7.1-1)
EF = error of 1° x 1° mean free air anomaly (mgal) predicted
by equation (4.1-2)
ag = ETTOT of Bouguer ancmaly (mgal) at the measurement site
e = estimated error of local geologic correction (mgal)

h = elevation at the measurement site (meters)

\

error of mean elevation used in the NOGAP basic predictor (meter:)

=t
"
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w FIGURE 7-1

EXGAP RELATIONS
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error of the slope constant of the NOGAP basic predictor

(14
]

error of the elevation at measurement site (meters)

o
li

error of mean elevation (meters)

o
(
]

w
il

NOGAP slope constant
When two or more computations are averaged, the error is given

by

E_ = (7.2-3)

where
l n = number of measurements used




8. UNREDUCED GRAVITY ANOMALY FREDICTION METHOD (UIIGAP)

(8]
[

Discussion and .lethod

The Unreduced Gravity Anomaly Prediction (UNGAF) method relies
on correlations between the unreduced surface anomaly defined by

equation (3.9-1)

gy = By = ¥ (8.1-1)

and elevation datz within major geologic/tectonic provinces.
The unreduced surface anomaly is almost always more strongly
correlated (larger coefficient of correlation) with elevation than

either the free air or the Bouguer anomaly (Rothermel, 1973). Thi=

is true in both a local and a regional sense. Also, only a relativel:

small amount of measured data is required to establish usable
correlations. The distribution of this meesured data within

10

constitute the major strengths of the ULGAP method.

The major difficulty of the method is that valid basic pred -t~ r

relationships frequently must be deciphered from a complicated suit
nf local relationships. Nevertheless, the UNGAP method has prowven
to be very useful in some situations where a NOGAP basic predictor

cannot be determined--either due to an ill defined relationshiryp

between regional elevations and Bouguer anomalies or due to inzuffi~’

amounts and/or distributions of measured gravity data to enatle
definition of a control region.

i‘he normal local relationship between unreduceu surface ancraly

2nd elevation is given by equation (3.9-7).

1° x 1° areas is not important for UNGAP rrediction. These vropart) -

———
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(Ags)P = (AgS)Q - 0.3086 6h + 2 m k 0 8h - TC, + TC (8.1-2)

Q
witich, when (Ags)Q is taken to be at sea level and elevation dependent

terms are combined, can be written in the general form

Agg = L + 6h (8.1-3)

Lquaticn (8.1-3) can be viewed as the form of the UNGAP basic
predictor. |

The UlIGAP basic predictor is derived in the following manner.
A plot is made of unreduced surface anomalies against elevation for
gravity measurement sites within major geologic/tectonic provinces.
These plots almost always show the existence of strong linear
relationships betweer these two variables which can be expressed in
terms of equation (8.1-3). Generally, there will be a unique value
of the constants, ¢ and 8, for each 1° x 1° area. With locally
homogeneous structure, ¢ and 6 will varyAslowly and uniformly from
one 1° x 1° area to the next--or they may not vary at all. lore
rapid changes in ¢ and 6 may take place across breaks in local
structure and across major province boundaries. However, all of
these variations are merely superimposed on the dominant term, 0.3086 h,
in (8.1-2) so that the UNGAP relationship (8.1-3) is always well
behaved.

Subtraction of analytically computed or estimated local
zeologic effects from the unreduced ancmaly values before construction
of the plot sometimes yields one or more very well defined

relationships. In such cases, the slope and intercept constant of

each relationship are determined by a least squares fit (Appendix L).
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In other ceses, the plot will show a more complex suite of local
relationships which must be merged graphically into a single
average local relationship. Then the slope and intercept constants
determined graphically for the average relationships are used to
define the UNGAP basic predictors.

Insertion of the 1° x 1° mean elevation, E, into

'AES = ¢ + 6h (8.1-k)

where ¢ and 6 have been determined as above gives a basic prediction
of the corresponding 1° x 1° mean unreduced surface anomaly, Zgé.
Local geologic correcticns, determined analytically or empirically,
should be added to the basic prediction where possible. However,
caution must be used when the basic predictor was determined by the
merging process which rather arbitrarily forces "corrections" into
individual 1° x 1° relationships in order to obtain an average curve.
Careful observation of the nanner in which 6 and ¢ vary from one

1° x 1° to the next on the plots may help in the develorment of
empirical local adjustments to the basic prediction when the latter

was determined by merging.

The 1° x 1° mean free air and Bouguer anomalies are computed bty

'A‘gF = Kgs + 0.3086 h (8.1-5)
bgy = g, - 0.1119 h (8.1-6)
where
AgF = 1° x 1° mean free air anomaly
2g.. = 1° x 1° mean Bouguer anomaly

1° x 1° mean elevation in meters

=
]




232

Egé = 1° x 1° mean unreduced surface anomaly ,

8.2 Evaluation of IINGAP Prediction |

The standard error of UNGAP predictiocns is given by

_ 2 2y} C
ES = (eBP *e ) (8.2-1)
H
_ 2 2k _ )
B = (ES, +0.1e h) | (8.2.2) f
- 2 2=\ .
o (Eg? + 0.01 e h) (8.2-3) 1

where all E and e values are standard errors. Specifically,

EF = error of predicted 1° x 1° mean free air anomaly, mgal
% EB = error of predicted 1° x 1° mean Bouguer anomaly, mgal
ES = error of predicted 1° x 1° mean unreduced surface anomaly,
mgal
e = error of 1° x 1° mean elevation, meters
e = estimated error of local geologic ccrrecpions, mgal \
egp = error of the basic predictor, mgal

The error of the basic predictor is given by

/ y
, - 2.9 21% _
: epp [(e eh) (h ee) ] (8.2-4)
or,
) = 2+ 2% -
ep = [(6)2 +e2] (8.2-5)
where
6 = slope constant in (8.1-L)
ee = error in constant of the basic predictor found using the
error propagation formula (D-11) in Appendix D.
\ e, = estimated error of merging determined from the plot "scatter" !

- 2,




N
(¥

(el

sjuation (8.2-4) is used when the rasic predictor is determinci

~

ny = least squares solution. Equation (8.2-5) is used when tne hani

redi-tor is determined by merging.

oy
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9. GEOLOGIC ATTRACTION INTERPOLATION MLTHOD (GAIW)

9.1 Discussion ané Method

The Geologic Attraction Interpolation (GAIN) Method can be

used to prriict 1° x 1° mean gravity anomalies in regions where the

e

local gravitational variations are caused entirely by near surface
density contrasts. A few gravity measurements must be available to
control the regional gravity variations. Methods of the GAIN type
have yielded excellent results in Wyoming (Strange and Woollard,
196La) and in the south-central United States (Durbin, 1961a).
Methods of the GAIN type are used most frequently in regions

where sedimentary rocks overlie a cyrstalline basement and it is

this type of application which is discussed in the following
paragraphs.
In the GAIN method, several geologic cross sections are
constructed and then converted into density variation cross sections
using & density--cdepth relationship appropriate for the area being
* i worked. Data describing the density sections is entered into a two
‘ dimensional attraction computer program and the gravitational effect-
. of density contrasts in the local geologic structures are comp'*cd
at intervals along the sections. The computed effects are used to
interpolate gravity anomaly values &t points between gravity measurement

sites. The field of : ~asured and interpolated values is contoured

with respect to local geologic structure and the final 1° x 1° mean

Bouguer anomalies are read from the completed contoured charts.
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The geologic cross sections are constructed across tha centers

and pery :ndicular to the lcngest dimension of the geologic structures |

in the region. Each profile must pass through at least two gravity

measurement sites which, preferably, are located on basement rock

outcrops. Enough profiles should be constructed so that every

1° x 1° area contains a portion of one of the profiles. |
The geologic cross section itself is compiled from the best

available geologic and tectonic maps and related textual data i

using standard methods.

In converting the geologic cross sections to densi‘y sections,
density values for the crystalline basement and overlying sediments
can be obtained from well log data, or in the absence of such data,
by application of Chapter I)I of Woollard (1962). All sedimentary
rocks equal in density to the crystalline rocks are treated as
basement rocks. Density values determined for the sedimentary rocks
can be averaged and used to construct a sediment to basement density
contrast vs. depth curve. Density increase with depth tends to be
exponential for clastic sediments (see Figure IV-3, Strange and Woollard,
196ka). Recent near surface unconsolidated deposits may have a nearly
constant density--not verying with depth.

The density contrast vs. depth curve is applied to convert the
geologic cross section to a density contrast cross section. The

density section typically consists of near parallel layers which

cut across the geologic formation boundaries.
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rata from the aensity cross sections are entered into a twe
dimensional attraction computer program and the gravitational effect:s
of ‘he density section are computed. These local effects are
superimposed on the regional field as defined by the gravity
measurement. A computed profile of local gravitational effects is
shown superimposed on a "fixed" regionzl field defined by measured
data in Figure 9-1.

As shown by Figure 9-1, the location of each gravity measurement
has been plotted along the profile of local effects. The value of
the local effect at each measurement site is subtracted from the
Bouguer anomely value at that site to yield the regional component
at that site. The regional component is plot'ed on another graph

whose ordinate is the regional component of the Bouguer anomaly and

whose abscissa is along the profile (Figure 9-2). The plotted points
are interconnected with straight lines which define the regional
trend. Then the interpolated Bouguer anomaly for any point between
the observation sites is the sum of the regional trend (from Figure "-.'
’ / and the local gravitational effect (from Figure 9-1) at that point.
‘ Intervolated Bouguer anomalies are plotted at frequent interval:s
: along each profile »n a map base cof suitable scale. For 1° x 1°
prediction, a 1:1,000,000 scale is satisfactory. The plotted points
are contoured with respect to local geologic structure and topograph:,

and the final 1° x 1° mean Bouguer anomalies are read from the

completed contoured map. The final 1° x 1° mean free air 2nomaly

iz computed by equation (L.1-2).
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FIGURE 9-1

—

COMPUTED GRAVITY EFFECTS PROFILE

(See Figure 9-2 for numerical interpolation data)
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FIGURE 9-2

REGIONAL TREND PROFILE

MFASURED OBSERVED ] LOTTED
DATA .'.gB AgB
Gravity Station A - 170 mgal - 170 = (+5) = - 175 mgal
Gravity Station B - 185 mgal - 185 - (~10) = - 175 mgal
Gravity Station C - 160 mgal - 160 - (=5) = - 155 mgal
INTERPOLATED REGIONAL LOCAL TOTAL
DATA bgy EFFECT bgy
Point 1 -~ 175 mgal - 10 mgal ~ 185 mgal
Point 2 ~ 165 mgal 0 mgal - 165 mgal

o~
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10. CONCLUDING CCMMENTS ABOUT GEOPHYSICAL PREDICTTCH METHODS

A number of geophysical gravity anomaly prediction methods
have been described eni discussed in some céetail. Of these, NOGAP,
EXGAP, UNGAP, and GAPFREE are applied to extend 1° x 1° mean gravity
anomaly coverage into regions which contain very limited, if any,
measured gravity data. The two interpolation methods, GRADE and
GAIN, are applied to densify existing fields of measured gravity
data for the purpose of 1° x 1° mean gravity anomaly prediction.

All these methods give values which are superior to those which can
be obteined by use of the measured data alone with conventional
averaging techniques.

Since no two geologic and tectonic settings are exactly
identical, it is safe to say that none qf the geophysical methods
ever has been applied twice in exactly the same maﬁner. In fact,
many variations to each method are possible and the scientist doing
r - the prediction always must be alert for new ways to adapt the standard
| methods so that they "fit" different regions. Therefore, the
. procedure discussed must be regarded as a general guide rather than

a cookbook list of recipes.
Experience, insight, and judgment factors are very important

in geophysical gravity prediction. The best way to learn it is to

do it!

o~
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APPENDIX A.

DERIVATION OF FORMULA

FOR bOUGUER PLATE CCRRECTION

Author's note: The following mathematical development for the
Bouguer plate correction is based on that given in Heiskanen and
Moritz (1967) and does not represent original work by the writer.

The other appendixes do represent original work by the writer.

1. Definition of Symbols Used (Figure A-1)

a = height of point, P, above origin

h = height of cylinder above crigin

r = radius of cylinder

dV = volume element within cylinder

X, ¥. 2 = rectangular coordirnates

“, S, 2 = cylindrical coorcinates

tl = slant distance from point, P, to top edge of cylinder

t2 = slant distance f'rom point, P, to bottom edge of cylinder
£ = distaance from point, P, to volume element, dV

g = density of material rontained within the cylinder

UP = gravitational rpotential at P

k = gravitational constant

gp = gravitational torce at P

B = gravitalional force on axis at upper surface or' the cylinde-
gy, = gravitational force of the Bouguer plate at a point on

its upper surface
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FIGURE A-1

FIGURES FOR DERIVATION OF

BOUGUER PLATE CORRECTION
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2. Vertical Attraction of a Homogeneous Right Circular Cylinder

at an External Point Situated on the Axis of the Cylinder

The potential of any solid body at an external point is given by
eI
U, =k J J -[dV (A-1)

If the point is located on the axis of a right circular cylinder

then, from Figure A-1
1.
2= (s2 + {a-2}2)? (A-2)

dv = dx dy dz = s ds da dz (A-3)
Also, from Figure A-1, it is evident that the integration limits

are, for the cylinder,

0 to 27m for a
O tor for s (A-k)
0O toh for 2z

Thus, with the density being constant, equation (A-1) may be

written B r on
Up e J J J s ds da dz 3 (4-5)
z=0 s=0 a=0 (52 + {d - 2)?)

Integration of (A-5) with respect to a gives

2n
UP =k o J J s ds dz . B
z20 s20 (s? + {d - z}?)
0
and evaluation between the limits O and 2w leaves
Up=2mko J [ Sdezn% (A-€)
(s + {a - z}?)

o~

G D S,
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In order to integrate (A-6) with respect to s, note that
} "
’g:'{ (xz P 8.2)’2 = x_dx ;5
(x2 + a?)
Therefore (A-6) integrated with respect to s gives
h r
UP =271ko0 [ (s2 + {d - z}z);2 dz
250 0
and evaluation between the limits O and r leaves
h
U K JFZ-d+({d-z}2+r2);‘] dz (A-T)

2=0
In (A-T), note that

({@a - 2z}2 + r2)li = ({d% + r?} - 24z + zz)%

which is of the form

(ax? + bx + c);2
where
a=1
b = -2d
c = (r? + dz)11
x =z

Integral tables give the form

2ax + b

o 1
f {ax2 + bx + ¢)* dx = Sie— (ax2 + bx + ¢)?

! - bl L
+ L1 AL tn [Pax +b + 2 (& {ax? + bx + ¢})* ]

8a vV a
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In consideration ot the above and after some simplification

(@ -2) (r?2 + {4a - 2}2)5
(A-8)

-

1
J ({a - 232 +r2)% = .

1
= %- r2 g {d -z + ({@d - 2}2 + rz)'i ] + r2 gn 2

=

The constant term, %-rz ¢n 2, in (A-8) will vanish during

avaluation of the definite integral and, hence, may be dropped.

Now, note that

[(=(a-2)%] = (z-4)az (A-9)

4
dz
Considering the results (A-8) and (A-9), integration of (A-T)

with respect to z gives

1
2

ULu=27ko[=(d-2)2=-=(d=-2) (r2 + {d - 2}2)

B

o f=
o=

1 ) B
-5 an G-z + {(a-2)2+ r2}*% ]
0

and evaluation belween the limits O and h leaves the final expression

for potential generated by the cylinder at P.

A~

b

Up = Tko {(@d -hn)2-4d2-(a -n) (r2 + {d - h}?)

I 1 1
+d (r2 +d2)2- 12 pn (@ -h+ {({d -h)2 + r2)? ] (A-10)

The vertical gravitational attraction of the cylinder at P is
the negative derivative of the potential at P with respect to the

vertical axis of the cylinder

g = - o (A-11)

st P
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Operating on (A-10) according to (A-11) gives, after considerable
simplification
gp=2T1ka (h + (r2+{d-h}2)l§- (r2+d2)”2'] (A-12)
which may also be written (Figure L-k)

g, =2Tko [h-tl+t2] (A-13)

Now let the point, P, descend to the upper surface of the cylinder.

At this point, 4 = h, and (A-12) becomes

—
—
>
|
—
=

1
2a7ko [h+r- (r2+n2)?

€g

3. Attraction of the Bouguer Plate at a Point Situated on Its

Upper Surface

The Bouguer Flate is a right circular cylinder of irfinite
radius and height, h. 7To obtain the gravitational attraction of the
Bouguer plate at a point on its upper surface, take the limit of
(A-14) as r approaches infinity

1.
gg=27koh+2mko lim [r - (r2 + n2)* ) (4-19)
—

According to L'Hospital's Rule

lim f(xj = lim S Bl
dx

A rw ¥roo
when

lim f(z) -+ =«
X

Applying L'Hospital's Rule to the second term of {(A-15)

N 3 i
lim [r - {(r2 +h2)?} = 1im = [r - (r?2 + h?)? ]
r® rro

Y
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. r
= 1lim [l-m—]

1
= ifﬁ - 2 !
« 0

Therefore, (A-15) reduces to the form

gy = 2nkoh

which is the Bouguer Plate correction.

(A-16)
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APPENDIX B.

A¥ ERROR COVARIANCE FUNCTION FOR 1° X 1° MEAN ,

ANOMALY VALUES PREDICTED BY THE NOGAP METHOZD =

Zrror covariance functions are frequently of use in error i
proragation studies tc determine the accuracy of varicus geodeti~
quantities computed using the 1° x 1° mean ancmalies. Heiskanen znd
Moritz (1907) give some appropriate error covariance formulas for
gravity prediction where ample otserved gravity data is available.
The followirng derivation is intended to develop an error covariance
formula which cun be applied in the case when little or nc observad
jeta exists, and when 1° x 17 mean anomaly prediction is donre usiug

a «JGAr-1ype procedure.

=%

orm.la, used to predi.t 1° x 17 mean

anomalies withlin a rrediction area containing little or nc observed

graviity’ datay Fay tey wriksven in tRe JonRy

. . » .
A = + 30 ® ] B-1
L.Ab}_,l. DIP xP .JuP (
where
- = S S S leeeey - >3 S h o 3T . P P T PSR
LE. = rredicted mean anomaly for the 17 x 1Y zres designelsd
" 1"
wrea -
Br,. = taslce prealctor Ior ares
n.. = wegional cor: ction(s) for area
.« N ~ . \ v
~J., = Lorul cerrectionis) Tor arcsa
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Local corrections, LC, are determined individually for each
1° x 1° prediction and are based upon an analysis of local geological/
geophysical mass anomalies which exist within each 1° x 1° area.
The regionel corrections, RC, are functions which vary slowly from
one 1° x 1° aré' to the next and express small changes in the
regional gravity anomaly field provided by the basic predictor.

The basic predictor, BP, is a prediction of the stable regional

part of the gravity anomaly field. It is given by

BP, = a + aﬁ; (B-2)

where

h, is a2 mean elevation value corresponding to area P
L
a, 5 are constants
Insertion of (B-2) into (B-1l) gives an expanded version of

the basic NOGAP prediction formulia

bepp

''he constants o and Bare the intercept and slope constants,

= a+ sié + RC + LC (B-3)
respectively, of a linear regression between AgPR and E} for

1° x 1° blocks within a control area where sufficient observed
gravity data iz available to obtain accurate mean anomaly values
using conventional data averaging methods. Both the control area

and predictior area must bo contained within the same overall regional

structure such that the « and B constants determined in the control

areca are alsc applicable in the prediction area. For this reason,

the erroyr relationships of the basic predictor are identical in the

coantrol ani prediciion areas. The equation aporov.iate for linear

EE

_—— T
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~

regression in the control area is

tg. . = mean ancraly predicted for area P from observed data

“egional &nd local corrections are subtracted from AgPQ in
crder to obtain a uniform regional gravity anomaly value, Agpq, which

can ve expressed in the linear form of the basic predictor. Witn

the definitinn,

I‘r - '.'Y = '(’\ = | o b_cl'.
..A{:;,E 1_.5}.,3 IXVP u\,P ( b i

zquation (B-4%) ror the control area becomes
a + Bh (B=L

“81r © P
e nrocedures used and errors involved in predicting the locai
and regioral corrscticns are identical in both the control and
prediction areas. Consequently, the error relationships of LC
and U together with those of the regional gravity field, are
adequately expressed in the single value, AéPR'
the intercept value, u, is the gravity anomaly value corresponding
to zero mean elevation. Moving a to the left side of equation (E-¢)
has the effect of translating the mean elevation-mean anomaly
coordinace axes such that the regression line relating the gravity
and elevation purancrters io constrained to pass curough the point

(O, 3). The translaticn has no effect whatsoever on the slore

constant, :, 2r lne error relationships. Accordingly, {b=C) becones

(. = a) =& (£=7)

[

e
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Now define hm to be the mean value of all hP within the control |
area, and 1#
w—— —) — I;
8L = hy -~ h (B-8) .
vhere
b, =M {hy} (B-9)
/
Then, (B-9) becomes ’
= =] AR + h
(8gp - o) = Bahy Bh
or
L (AgPR e ma) = BAhP
b Since both o and BE; represent gravity values, let
bgp = (bg, = o - 8h_) (B-10)
to obtain
= Boh ~-11
* bg, = Bahy (B-11)
which is merely the control area prediction equation (E-4) written

in a simpler form which is most useful for error analysis. Both

Lg. and Xg are variables which are centered about zeroc by the

.
operations (B-10) and (B-8) respectively, as is required by the
following statistical coinputations.

Thus, Aép is a form of the mean gravity anomaly precicted for
the 1° x 1° aren designated as area P by the NCGAP gravity correlation

prediction procedures. It includes all error factors due to basic

predictor, regional corrections, and local corrections, and represents

errcor conditicns in both the control and prediction areas.
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If the correct value of the mean gravity anomaly fcr area P
(corresponding in form to the predicted value AgP) is XE%, then the
true error of prediction, E , is given by

= = -12
Ep bey, he,, (B-12)

Insertion of (B-11) into (B-12) gives

E, = bg, - 8bhy (B-13)

Squaring (B-13) yields

2 = (3z. - 8an.) (22 - RAR
Ep m%, emp)u%, smg
or
Ep o8y 2888y, shy, + 8%4h, (B-1h)

Now, form the average of (B-14) over the control area. In so
doing, adapt the statistical definitions of Heiskanen and Moritz
(1967) as follows

2N = L2
M{E°} = m p

M {8g,2} = B

2 (B-15)

M {AgP Aup} = B,
— T
M {AhP } Ay

where

M {E2} = the average value of E?

m = the standard error of predicticn

CS = the auto-covariance (average product) of mean gravity anomalies
which are a constant distance, S, uapart
BS = the cross-covariance of mean gravity anoma'v and mean elevation

values which are a constant distance, S, apart
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Ké = the auto-covariance of mean elevation values which are a
constent distance, S, apart
For S=0, as is the case in (B-15), the values Eb, B., and Xb
represent the variances.

In consideration of the definitiors (B~-15), averaging (B-1k)

yields

M {E2} = M {ZEP?-} - 28 M {EP EP} ~ B2 M {A—h'PZ}

cr

2 - - Y 2 % s
m¢ = C 2sao+e AO (B-16)

The valr=z of B for most accurate prediction is found by
minimizing the standard prediction error expressed by (B-16) as a

function cf B. Accordingly

amz = —
3B 0

or

B
g = 2 (B-17)
o

It can be shown that the value of B cbtained by (E-17) is
identical to that obtained by linear regression analysis of equation
(B8-k).

io obtain the correlation of prediction errors for two
dicferent 1° x 19 areas, it is necessary to form the error covariance

UPQ, which by definition is

= M {E, E} (8-18)

OPQ
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Inserting (B-13) into (B-18) gives

=M {EP EQ} =M {(AgP - BAhP) (AgQ - Bah_ )}

“pq Q
or
- A= i B = s 1 =1
%q M {ag AgQ} B M {4g, AhQ} B M {AgQ AhP} 8% M {An, AhQ}
(B-19)
Performing the indicated averaging gives the error ccvariance
=C__ - B+ @2 A .
9pq = Cpg = 28 Bpy * 8% Apy (B-20)
where
E}Q = auto-covariance of mean gravity anomalies which are =
constant distance, S=PQ, apart
BPQ and APQ are similarly defined
To form the error covariance function, compute OPQ as a function
of S=PQ.

The error covariance function, as derived, is applicable over

both control and prediction areas for 1° x 1° mean anomalies

predicted by the NOGAP prediction procedure.
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APPENDIX C.

GENERALITY OF EQUATIONS (3.6-24) AND (3.6-25)

IN EVALUATING THE EFFECT OF LOCAL TOPOGRAPHY ON GRAV1TY

Equations (3.6-24) and (3.6-25), which express the effect of
local topographic variations on the free air graviiy anomaly, were
derived with reference to a very simple topographic model (Figure 3-2).

t will be demonstrated in this Appendix that these equations, in

fact, have general application to all topographic settings. It

the well known reduction of Poincare and Prey (see Heiskanen and

t will also be shown that equation (3.6-23) is a more general form cf
Moritz, 1967, page 163).
Figure C-1 is a general topographic model where the points P
and Q, between which the difference in gravitational attraction of
the topography is to be determined, are toth located on a slope.
b The locally uncompensated feature is considered to be the topographic
mass above the elevation hR and below the =levation hs. The
' gravitational attraction of the mass within this feature must be
} removed from observed gravity at P and Q to correct the equality

(3.6-18) for the case that the feature is wholly uncompensated.

Reading from Figure C-1, it is evident that

— - - {0
(8p)p = (&))p - {850 - (g))p {C-1)
(gT)Q = \gl)Q + (32)Q - (gk)Q (c-2)
# where
(gT)P = gravitational attraction at P of the locally uncompensated

mass within the hill




259
(

gT)Q = gravitetional attraction at Q of the locally uncompensated .

mass within the hill

(gl)P = gravitational attraction at P of the mass within the
region labeled A on Figure C-1

= gravitaticnal attraction at Q ‘of the mass within the

(gl)Q

region labeled B on Figure C-2

(gE)P’ (82)Q’ (gh)P’ (gh)Q are similary defined

The signs of (g.). and (gh)P are negative since removal of mass

€>7'p

in the hill beneath P will reduce the value of gravity measured at F.

The sign of (g.)

1p is positive because the removal of mass in the

L hill which is situated above P will increase the value of gravity
measured at P. Gimilar comments apply to explain the signs of the

terms relating to the point Q.

Using (C-1) and (C-2) to correct (3.6-18) for the case of no

compensation gives the relation
. (28g)p + (8))5 - (&) = ()5

= (Ags)Q + (gl)Q + (32)Q - (gh)Q - 0.3086 sh (c-3)

Equation (C-3) which is valid for the general mode. (Figure C-1)
corresponds to equation (3.6-19) which is valid for the simple
topographic model (Figure 3-2). Converting (C-3) to the free air

anomaly oy (3.6-1L4) and the definition, b8 = &y = ¥

(sgp)p + (8))p - (g,)p - (g )p

= (AgF)Q + (gl)Q 2 (gg)Q - (gh)Q (c=k)
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FIGURE C-1

TOPUGRAPHIC VARIATION

GENERAL MODEL 1
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It remains to be shown that the general relations (3.6-24) and |

(3.6-25) are identical to (C-L4). Equation (3.6-24) is )
|

1

= I - - A

(teg)p \AgF)Q +2mko8h-TIC,+ IC, (C-5) .

Ircertion of the value, o = 2.67 gm/cm3, and the value of the i

gravitational constant gives equation (3.6-25).

(ApF)P = (AgF)Q + 0.1119 ¢sh - TC, + TCQ (Cc-6) ,,

Since &h = hp - hQ, equation (C-5) may be written

(AgF)P -2 ko h,*+TC, = (AgF)Q -21ko hQ + lCQ (e-7

which may be recognized as one form of the equation (3.7-22).

The terms, 2 m k ¢ h, are just the simple Bouguer correction, gB, SO

that (C-7) may be written

(agp)p - (gg)p + TCp = (AgF)Q - (gB)Q + TCy (c-8)
From Figure C-1 and the definitions of the Bouguer ari terrain

corrections, it is evident that

(gB)P = (ge)P + (83)P + (gh)P + (gs)P + (86)P

m = \
IC, = (e )p * (83)P + (gs)P

= (c-9)
(gB)Q = (gh)Q + (gS)Q % (gé)Q
¢, = (8)y + (By)y + (&s)y
Insertion of equations (C-9) into (C-8) gives, after some
simplificaticn,
(bgp)p + (gl) - (ge)P - (g,)p - (g6)p
(C-10)

= (AgF)()2 + (gl)Q + (ge)Q - (gL,)Q - (gé)Q




Since layer € i: an infinite plane larer with respect to bollb

points P and «, then

and (C-10) reduces to

(cgp)y, + (g)), = (g,), - (g

= (AgF)Q + (g,l)Q + (ge)(‘2 - (€h>Q

wrhich is identical to the previously derived equation (C-k4).
the general applicabiliiy of (3.6-2L) and (3.6-25) is proven.
It is a simple satter to extend the relavions derived for

general model 1 (Ficure C-=1) to the situation known by general modcl

(c-

110

Henee,

2 (Firure C-2). Model 1 represents the r-neral casc for gentle to

moderate topcgraphy, whercas model 2 represeits tne general case ror

rugged topogravhy.

Model 2 is complicatea by the existence of a second uncompensated

local feature which exerts =z gravitational attraction at the point:c

(51)- = (gl)l + (g[,)P - (GB)P Gy = (CB)P
(C;:)Q = (é,*)'{ + (82)-{ + (ir(),\ (58)% - (gh),

(

T and {. For vthe case of Migure C-2, it is evident that

\
o)

Using (U-12) anl (C-13) to correct (3.6-18) for the case of un

compensation yives Lhe relation

o




FIGURE C-2

TOPCGRAPHIC VARIATION

GENERAL MODEL 2
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roof that (3.6-2L) reduces to (C-1L4) for the case of Figure C-2
is left as an exercise for the reader. The generalization of the
Figure C-2 model to the case of many adjacent locally uncompensated
features is obvious.

The two limiting situations of the Figure C-2 model are of
int.rest. One limiting case is approached as the width, w, of the
valley becomes large. In this case, the attraction of the second

hill becomes negligible, i.e.,

As w ~»> large
(37)l >0

(o). ~ 0O {C-15)

where i = P or @

Insertion of the limits (C-15) into the relation (C-1k4) yields
the relation (C-3) which applies to the model of Figure C-1.

I’'he other limiting case of Figure C-2 is when the width, w,

of the valley becomes small. Then

As w > 0
(g)); * (g7)j 2 mnko (b= h)
(gg)i + (ga)i +2nka (hs - hp) (c-16)
(g)); * (59)l +2mnko (hg - hp)

where 1 = P or . Insertion of the limiting relations (C-16) into

(C-14" gives
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-2nko (h

(AgS)P +2m1ko (hs -h - hQ) -27 ko (hQ = hR)

P) P

= (AgS)Q +2rkofhg-h)+2mko (b, -h)-2n1ko (hQ - h)

P 5 Q R

- 0.3086 sh

which, since 6h = hP

- hQ, reduces to
(Ass)Q = (8gg)p - b 7 k o 6h + 0.3086 h (c-17)

With 0 = 2.67 gm/cm3 and the usual value for k, the above becomes

(AgS)Q = (bgg), + 0.08L8 ok (c-18)

Equations (C-17) and (C-18) may be recognized as the reduction
of Poincare and Prey which is used to obtain the value of gravity
at a point (Q) within the earth at a distance 6h below a surface

point (P).

|
|




APPEL DTX D.

LEAST SQUARES SOLUTION
AN ERROR FUNCTIONS

FOR NOGAP BASIC PREDICTORS

1. Linear Regression

’ The linear basic predictor used for the NOGAP method is given
by equation (k.2-1)
+8_ h (D1}

where

L caund

BP

basic predictor, a regional Bouguer gravity ancmaly value

=3
"

g = the (Bouguer anomaly axis) intercept constant

BR = the slope constant
h = the mean elevation form used for the basic predictor
relationship
-
Replacing the predicted value BP by che measured value AgB and
b dronping subscripts gives error equations of the form
f .
3 + h - -
Vi, =a+B8h - 0g (D-2)
A least squares solution using the error equations (D-2) and a
Geussian reduction of the normal equations gives the following
results
z (Gi Hi)
g = —i 1 (p-3)
z e,
i
¢ (sg,) Zh,
\
a = —- —= 3 (s-L)
h n n




- - by (Gi H,)
2 2
(£ 62, 5 )
[eg] = —2
g H2
y E;
[aB] = - (88]
n
5 Mt
(ou] = 2 - — [aB)
n
e =u aQ
o
eB =qu v iBB]
- Vi
©(a + gn) = ¢ 7 loaT + 20 TagT + 07 (e8]
z Ag{
G]'_ E Agi a
n
_ 2w
H, = h, - S
1 1
n

In the above,
n = number of "measurements"
R = correlation coefficient

[aa), (o8], [BR] = weight and correlation numbers

(D-6)

(L=7)

(D-8)

(D-10)

(D-11)

(D-12)

(D-13)

(D-14)

R ——
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e, = error of intercept concept
eB = error of slope constant
u = standard error °f weight unit

Gi’ di are center gravity coordinates

2. Multiple Regression

The basic predictor form using a multiple correlation is

BP = a + bx + cy + dz (D-15)

Replacing the predicted value BP by the measured value Ag gives

error equations of the form

=) + - -
Vi a + bx, cy; + dzi Agi (D-16)

A least squares solution using the error equations (D-16) and a
Gaussian reduction of normal equations give the following results

where brackets indicste summation:

_dge. 3
E dd. 3 (D-17)
cl., 2 cd. 2
cc. 2 ce. 2 d (p-18)
bl l bd. 1 be, 1
e Sl el 2T i (D-19)

'3
po= [99——1’ (D-21)

|
-
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e, =M V aa) (D-22)
e, = M B8 (D-23)
e, =w Y (yy) (D-2L)
&
e = ¥ Al (D-25)
f
epg * ° +bx + cy + dz = [(aa) + <2 (88) + y2 (yy) + 2% (88) + 2x (ad)
+ 2y (ay) + 2z (ab) + 2xy (3y) + 2xz (B2) + 2yz (aa) ] & (D-26)
_ dm. 3 }
(ad) = = aa. 3 (L-27)
(ay) = - B2 - a2 (an) (9-28)
bm. 1 bd be. 1
. (ag) = = BT = Too1 ) w2 (ov) p=29)
X (o) = & - 121 o) - 1 (o) - L2 (o) (p-30)
| 3
. (gp) = - dd. 3 (p-31)
ch. 2 cd. 2 \ "
(By) = - cc. 2 cc. 2 (82) (D-32)
bd. L be. 1
(gg) = =T - .1 (ga) - b,g. 0 (gy) (D-33)
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.  @p. 3
(vA) = - 34,73
1 cd. 2
) =2 === - o 5 ()
1
(88) = 33
3
r
bb. 1 = [x2] - lllzlil
te. 1 = [xy] = I_)lerLX_l
t b 4 2 sz = IzaE;Lal
be, 1 = - [xAg]-g--L’.c.]ELA.ﬁl
ce. 2 = [y?] - lllzlll _ {be. ;g'(?c. 1)
- . = [yl 2] _ (be. 1) (bd. 1)
R bb. 1
| ce. 2 = = [yAg] + .[lJT]..[é.E.l_ &C. ig'(?io Q

ad. 3= (23 - lzldzl  fvd. 1) (bd. 2) (ed. 2) cd. 2)

H bb. 1 ce.

]

(D=35)

(D-30)

(D-37)

(D-38)

(D-39)

(D-Lo)

(D=-k1)

(D-42)

(D-L43)

(D-Lb)

de. 3 = - [zLg

bb. 1

A

>

09, b o= [ag?] - _ (b2, 1) (ve.

o lzl [ae]  (bd. 1) (2. 1)  (ed. 2
n

n bb. 1

. Nefts 29 Wele 2 (GRs 30 (dgs 2)

ec. 2 dd. 3

(D-L6)

g

4
]
|
i
.
(
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|' .

bm. 1 = & (D-L7) ‘

" (

Lyl {be. 1) (bm. 1) :

cm., 2 = = b 1 (D-48) |

lz] _ (bd. 1) (bm. 1)  (cd. 2) (em. 2) (D-49)

dm. 3 = n bb. 1 cc. 2
3

_be. 2 ﬂ

cn. 2 = ] ‘D 50)
\

_bd. 1 f(ed. 2) (cn. 2)

dn. 3=y 1" cc. 2 (D-51)

_¢cd. 2 -

dp. 3= 5. 2 (D-52)




———— T

274

APPENDIX E.

DIGEST OF CONVENTIONAL METHODS

A summary cf conventional methods used to predict 1° x 1° mean
gravity anomalies 1s included for the convenience of the reader.
Additione’ details may be found in Defense Mapping Agency Aerospace

Center (1973).

1. Observed Gravity Averages

The averaging method is the simplest method for determining
1° x 1° mean Bouguer gravity anomalies and can be relied upon to
provide accurate mean values when a large number of gravity
observation stations are evenly distributed throughout the 1° x 1°
area. Two computational schemes are in common usage. The 1° x 1°
mean Bouguer ancmalies can be computed as the arithmetic mean of the
observed Bouguer anomaly values at all observation stations withkin
the 1° x 1° arca. Alternatively. K averages may be computed individually
for each 10' x 10' component of the 1° x 1° area, theun the 10' x 10'
corponents are averaged to obtain the final 1° + 1° mean values. The
latter procedure automatically compensates for minor irregularities

in gravity observation station distribution witkia the 1° x 1° area.

2. Gravity Ancualy Map Contouring

The contouring method is usually a most reliable method for
determining 1° x 1° mean Bouguer gravity ancmalies and provides

accurate values ever, when the gravity observation stations are

= Eer==—==— =g
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unevenly distribut~d within the 1° x 1° area. The location of

each gravity observation station is plntted on a map sheet of
suitable scale. The corresponding Bouguer anomely value is annotated.
Iso~anomaly contours are interpolated from the anomaly values and
drawn on the map. Plotting and contouring may be done visually and
by hand, or mechanically using computer contouring programs s..u
sutomatic plotting equipment. The 1° x 1° mean Bouguer anomaly value
may be determined with a sufficient degree of accuracy from fhe
completed contour map as the average of the interpolated values for
the four corner points, the four mid points on each side and the

center point taken twice (Woollard, 1969a).

3. Statistical Prediction

The statistical methods vhich can be used tu compute 1° x 1°
mean gravity anomalies provide values of somewhat greater rel.ability
than the contouring method in some cases, less in others. The
degree of reliability depends on the amount and distribution of
observed gravity data coverage and how well the numerical process
involved can simulate the entual geophysical and geological
structures which produce the gravity anomaly variations.

The statistical prediction program for mean gravity anomalies
is based on the formulation developed by Moritz and later modified
for practicel application by Rapp. A set of gravity anomaly
ccvariance coefficients is required as input data. These coefficients
are derived from observed gravity anomaly values within a relatively

large area such as a 5° x 5° vegion and statistically represent the

P



276

average rate of chahge with respect to distance with the gravity

anomaly field within that region. The derived coefficient set is

H used to predict mean gravity anomalies for small size surface l
elements within the larger region. In normal practice, mean

} grevity anomalies ere computed for each 5' x 5' component of a
1° x 1° area. The 5' x 5' values are then averaged to obtain d
1° x 1° mean gravity anomalies. : ﬂ

To obtain optimum results when using the statistical approach

in mean gravity anomaly predictions, care must be exercised to
insure insofar as possible that the gravity anomaly covariance
coefficients used for the prediction are derived from a region
having the same gravity field characteristics as the area in which

the mean esnomaly predictions are being made.

— g
™~
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